Food Detection with Image Processing Using Convolutional Neural Network (CNN) Method

A. Ramdani, Agus Virgono, C. Setianingsih
{"title":"Food Detection with Image Processing Using Convolutional Neural Network (CNN) Method","authors":"A. Ramdani, Agus Virgono, C. Setianingsih","doi":"10.1109/IAICT50021.2020.9172024","DOIUrl":null,"url":null,"abstract":"Currently, the payment process at restaurants is still manual and inefficient because it uses a cash register. A cashier will check what food is ordered, then count it with the cash register. This is not efficient. So food detection devices and automatic food price estimates have the answer to these deficiencies. Food detection aims to facilitate payment at restaurants, and automatic food price estimation using the Convolutional Neural Network (CNN) classification method. The detection accuracy of 6 types of food using the CNN method was obtained 100% with 80% data partition training data and 20% test data with epoch 9000 and learning rate 0.0002, with a detection time of fewer than 10 seconds.","PeriodicalId":433718,"journal":{"name":"2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT50021.2020.9172024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Currently, the payment process at restaurants is still manual and inefficient because it uses a cash register. A cashier will check what food is ordered, then count it with the cash register. This is not efficient. So food detection devices and automatic food price estimates have the answer to these deficiencies. Food detection aims to facilitate payment at restaurants, and automatic food price estimation using the Convolutional Neural Network (CNN) classification method. The detection accuracy of 6 types of food using the CNN method was obtained 100% with 80% data partition training data and 20% test data with epoch 9000 and learning rate 0.0002, with a detection time of fewer than 10 seconds.
使用卷积神经网络(CNN)方法进行图像处理的食物检测
目前,餐馆的付款过程仍然是手动的,效率低下,因为它使用收银机。收银员会检查您点了什么食物,然后用收银机清点。这是没有效率的。因此,食品检测设备和自动食品价格估计可以解决这些不足。食物检测的目的是方便在餐馆付款,并使用卷积神经网络(CNN)分类方法自动估计食物价格。使用CNN方法对6种食品的检测准确率为100%,80%的数据分区训练数据和20%的测试数据,epoch为9000,学习率为0.0002,检测时间小于10秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信