Rings and fields of constants of cyclic factorizable derivations

J. Zieliński
{"title":"Rings and fields of constants of cyclic factorizable derivations","authors":"J. Zieliński","doi":"10.18778/8142-814-9.16","DOIUrl":null,"url":null,"abstract":"We present a survey of the research on rings of polynomial constants and fields of rational constants of cyclic factorizable derivations in polynomial rings over fields of characteristic zero. 1. Motivations and preliminaries The first inspiration for the presented series of articles (some of them are joint works with Hegedűs and Ossowski) was the publication [20] of professor Nowicki and professor Moulin Ollagnier. The fundamental problem investigated in that series of articles concerns rings of polynomial constants ([26], [28], [33], [29], [8]) and fields of rational constants ([30], [31], [32]) in various classes of cyclic factorizable derivations. Moreover, we investigate Darboux polynomials of such derivations together with their cofactors ([33]) and applications of the results obtained for cyclic factorizable derivations to monomial derivations ([31]). Let k be a field. If R is a commutative k-algebra, then k-linear mapping d : R→ R is called a k-derivation (or simply a derivation) of R if d(ab) = ad(b) + bd(a) for all a, b ∈ R. The set R = ker d is called a ring (or an algebra) of constants of the derivation d. Then k ⊆ R and a nontrivial constant of the derivation d is an element of the set R \\ k. By k[X] we denote k[x1, . . . , xn], the polynomial ring in n variables. If f1, . . . , fn ∈ k[X], then there exists exactly one derivation d : k[X]→ k[X] such that d(x1) = f1, . . . , d(xn) = fn. 2010 Mathematics Subject Classification. 13N15, 12H05, 34A34.","PeriodicalId":273656,"journal":{"name":"Analytic and Algebraic Geometry 3","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic and Algebraic Geometry 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/8142-814-9.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a survey of the research on rings of polynomial constants and fields of rational constants of cyclic factorizable derivations in polynomial rings over fields of characteristic zero. 1. Motivations and preliminaries The first inspiration for the presented series of articles (some of them are joint works with Hegedűs and Ossowski) was the publication [20] of professor Nowicki and professor Moulin Ollagnier. The fundamental problem investigated in that series of articles concerns rings of polynomial constants ([26], [28], [33], [29], [8]) and fields of rational constants ([30], [31], [32]) in various classes of cyclic factorizable derivations. Moreover, we investigate Darboux polynomials of such derivations together with their cofactors ([33]) and applications of the results obtained for cyclic factorizable derivations to monomial derivations ([31]). Let k be a field. If R is a commutative k-algebra, then k-linear mapping d : R→ R is called a k-derivation (or simply a derivation) of R if d(ab) = ad(b) + bd(a) for all a, b ∈ R. The set R = ker d is called a ring (or an algebra) of constants of the derivation d. Then k ⊆ R and a nontrivial constant of the derivation d is an element of the set R \ k. By k[X] we denote k[x1, . . . , xn], the polynomial ring in n variables. If f1, . . . , fn ∈ k[X], then there exists exactly one derivation d : k[X]→ k[X] such that d(x1) = f1, . . . , d(xn) = fn. 2010 Mathematics Subject Classification. 13N15, 12H05, 34A34.
循环可分解导数的常数环和域
本文综述了特征为零的域上多项式环上的多项式常数环和循环可分解导数的有理常数域的研究。1. 本系列文章(部分为与Hegedűs和Ossowski的合作作品)的最初灵感来自于Nowicki教授和Moulin Ollagnier教授的论文[20]。该系列文章研究的基本问题涉及各种循环可分解派生类中的多项式常数环([26]、[28]、[33]、[29]、[8])和有理常数域([30]、[31]、[32])。此外,我们研究了这类导数的Darboux多项式及其协因子([33]),并将循环可分解导数的结果应用于单项导数([31])。设k为一个场。如果R是一个交换k-algebra,然后k-linear映射d:→R称为k-derivation(或简单的推导)R如果d (ab) =广告(b) + bd (a)一个,b∈R R = ker集d被称为环(或一个代数)的常数推导d。k⊆R和一个重要的常数推导d是一个元素的集合R \ k, k [X]我们表示k [x1,。, xn], n个变量的多项式环。如果f1,…,则只存在一个导数d: k[X]→k[X]使得d(x1) = f1,…, d(xn) = fn。2010数学学科分类。13N15, 12H05, 34A34。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信