Object map building on various terrains for a Wheeled mobile robot

J. Oh, Beomhee Lee
{"title":"Object map building on various terrains for a Wheeled mobile robot","authors":"J. Oh, Beomhee Lee","doi":"10.1109/MFI.2017.8170350","DOIUrl":null,"url":null,"abstract":"This paper presents an objects-based topological mapping algorithm on different floors with various objects using a wheeled mobile robot. The extended Kalman filter (EKF) with adaptive measurement noise according to the terrain type is proposed to estimate the position of the robot. If an infrared distance sensor detects an object, the robot moves around the object to obtain the shape information. The rowwise max-pooling with a convolutional neural network (CNN) is proposed to classify objects regardless of the starting position of the observation. Finally, the object map consisting of nodes and edges generated from the classified objects and the distance between objects. Experimental results showed that the proposed algorithm could improve an accuracy of position estimation of the robot and efficiently generated the object map on various terrains.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an objects-based topological mapping algorithm on different floors with various objects using a wheeled mobile robot. The extended Kalman filter (EKF) with adaptive measurement noise according to the terrain type is proposed to estimate the position of the robot. If an infrared distance sensor detects an object, the robot moves around the object to obtain the shape information. The rowwise max-pooling with a convolutional neural network (CNN) is proposed to classify objects regardless of the starting position of the observation. Finally, the object map consisting of nodes and edges generated from the classified objects and the distance between objects. Experimental results showed that the proposed algorithm could improve an accuracy of position estimation of the robot and efficiently generated the object map on various terrains.
为轮式移动机器人在各种地形上建立物体地图
提出了一种基于物体的轮式移动机器人不同楼层不同物体拓扑映射算法。提出了根据地形类型自适应测量噪声的扩展卡尔曼滤波(EKF)来估计机器人的位置。如果红外距离传感器检测到物体,机器人就会围绕物体移动以获取物体的形状信息。提出了一种基于卷积神经网络(CNN)的行最大池化方法,该方法可以在不考虑观测点起始位置的情况下对目标进行分类。最后,由分类后的物体和物体之间的距离生成由节点和边缘组成的物体地图。实验结果表明,该算法可以提高机器人位置估计的精度,并能有效地生成各种地形上的目标地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信