Single snapshot DOA estimation in the presence of mutual coupling for arbitrary array structures

A. Elbir, T. E. Tuncer
{"title":"Single snapshot DOA estimation in the presence of mutual coupling for arbitrary array structures","authors":"A. Elbir, T. E. Tuncer","doi":"10.1109/SAM.2016.7569628","DOIUrl":null,"url":null,"abstract":"In this paper, single snapshot direction-of-arrival (DOA) estimation under mutual coupling (MC) is considered with arbitrary array structures. A compressed sensing approach is utilized and a joint-sparse recovery algorithm is proposed. In this respect, both spatial source directions and MC coefficients are embedded into a joint-sparse vector. A new dictionary matrix is defined using the symmetricity of MC matrix. The proposed approach does not depend on the structure of MC matrix and it is suitable for any type of array geometry. In the simulations, the proposed method is evaluated for a planar array where the antennas are placed randomly in 2-D space. It is shown that the proposed method effectively estimates the source parameters and performs significantly better than the alternative methods.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, single snapshot direction-of-arrival (DOA) estimation under mutual coupling (MC) is considered with arbitrary array structures. A compressed sensing approach is utilized and a joint-sparse recovery algorithm is proposed. In this respect, both spatial source directions and MC coefficients are embedded into a joint-sparse vector. A new dictionary matrix is defined using the symmetricity of MC matrix. The proposed approach does not depend on the structure of MC matrix and it is suitable for any type of array geometry. In the simulations, the proposed method is evaluated for a planar array where the antennas are placed randomly in 2-D space. It is shown that the proposed method effectively estimates the source parameters and performs significantly better than the alternative methods.
任意阵列结构相互耦合时的单快照DOA估计
本文研究了任意阵列结构下互耦合下的单快照到达方向估计问题。采用压缩感知方法,提出联合稀疏恢复算法。在这方面,空间源方向和MC系数都嵌入到一个联合稀疏向量中。利用MC矩阵的对称性定义了一个新的字典矩阵。该方法不依赖于MC矩阵的结构,适用于任何类型的阵列几何。在仿真中,对天线随机放置在二维空间中的平面阵列进行了评价。结果表明,该方法能有效地估计源参数,且性能明显优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信