Towards Redundancy-Aware Data Utility Maximization in Crowdsourced Sensing with Smartphones

Juan Li, Yanmin Zhu, Jiadi Yu, Qian Zhang, L. Ni
{"title":"Towards Redundancy-Aware Data Utility Maximization in Crowdsourced Sensing with Smartphones","authors":"Juan Li, Yanmin Zhu, Jiadi Yu, Qian Zhang, L. Ni","doi":"10.1109/ICPP.2015.99","DOIUrl":null,"url":null,"abstract":"This paper studies the critical problem of maximizing the aggregate data utility under budget constraint in mobile crowd sourced sensing. This problem is particularly challenging given the redundancy in sensing data, self-interested and strategic user behaviors, and private cost information of smartphones. Most of existing approaches do not consider the important performance objective - maximizing the redundancy-aware data utility of sensing data collected from smartphones. Furthermore, they do not consider the practical constraint on budget. In this paper, we propose a combinatorial auction mechanism based on a reverse auction framework. It consists of an approximation algorithm for winning bids determination and a critical payment scheme. The approximation algorithm guarantees a constant approximation ratio at polynomial-time complexity. The critical payment scheme guarantees truthful bidding. The rigid theoretical analysis demonstrates that our mechanism achieves truthfulness, individual rationality, computational efficiency, and budget feasibility. Extensive simulations show that the proposed mechanism produces high redundancy-aware data utility.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper studies the critical problem of maximizing the aggregate data utility under budget constraint in mobile crowd sourced sensing. This problem is particularly challenging given the redundancy in sensing data, self-interested and strategic user behaviors, and private cost information of smartphones. Most of existing approaches do not consider the important performance objective - maximizing the redundancy-aware data utility of sensing data collected from smartphones. Furthermore, they do not consider the practical constraint on budget. In this paper, we propose a combinatorial auction mechanism based on a reverse auction framework. It consists of an approximation algorithm for winning bids determination and a critical payment scheme. The approximation algorithm guarantees a constant approximation ratio at polynomial-time complexity. The critical payment scheme guarantees truthful bidding. The rigid theoretical analysis demonstrates that our mechanism achieves truthfulness, individual rationality, computational efficiency, and budget feasibility. Extensive simulations show that the proposed mechanism produces high redundancy-aware data utility.
面向智能手机众包传感的冗余感知数据效用最大化
本文研究了预算约束下移动众包传感中数据效用最大化的关键问题。考虑到智能手机的感知数据冗余、用户的自利和战略行为以及私人成本信息,这个问题尤其具有挑战性。现有的大多数方法都没有考虑重要的性能目标-最大化从智能手机收集的传感数据的冗余感知数据效用。此外,他们没有考虑到预算的实际限制。本文提出了一种基于反向拍卖框架的组合拍卖机制。它由一个确定中标的近似算法和一个临界支付方案组成。该近似算法保证了多项式时间复杂度下的常数近似比。关键支付方案保证真实投标。严格的理论分析表明,我们的机制达到了真实性、个体合理性、计算效率和预算可行性。大量的仿真结果表明,该机制具有较高的冗余感知数据效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信