Evaluation of Feature Descriptor on D-Saddle Keypoint Detection in Retinal Image Registration

Nurshafira Hazim Chan, K. Hasikin, N. A. Kadri
{"title":"Evaluation of Feature Descriptor on D-Saddle Keypoint Detection in Retinal Image Registration","authors":"Nurshafira Hazim Chan, K. Hasikin, N. A. Kadri","doi":"10.1109/CSPA.2019.8696015","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation of the common feature descriptor on D-Saddle keypoint detection to guide the retinal image registration process. Few feature descriptor methods have been chosen which are Histogram of Oriented Gradient (HOG), Speeded-Up Robust Features (SURF), Binary Robust Invariant Scalable Keypoints (BRISK) and Fast Retina Keypoints (FREAK). Findings indicate that the combination of SURF descriptor with D-Saddle detection produced more significant inliers as compared to the other state-of-the-art combinations of descriptors and keypoint detections.","PeriodicalId":400983,"journal":{"name":"2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2019.8696015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an investigation of the common feature descriptor on D-Saddle keypoint detection to guide the retinal image registration process. Few feature descriptor methods have been chosen which are Histogram of Oriented Gradient (HOG), Speeded-Up Robust Features (SURF), Binary Robust Invariant Scalable Keypoints (BRISK) and Fast Retina Keypoints (FREAK). Findings indicate that the combination of SURF descriptor with D-Saddle detection produced more significant inliers as compared to the other state-of-the-art combinations of descriptors and keypoint detections.
视网膜图像配准中d鞍点检测的特征描述子评价
研究了d -鞍点检测中常用的特征描述符,以指导视网膜图像配准过程。特征描述子方法主要有直方图定向梯度(HOG)、加速鲁棒特征(SURF)、二值鲁棒不变可伸缩关键点(BRISK)和快速视网膜关键点(FREAK)。研究结果表明,与其他最先进的描述符和关键点检测组合相比,SURF描述符与D-Saddle检测的组合产生了更显著的内线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信