Multimodal Analysis for Deep Video Understanding with Video Language Transformer

Beibei Zhang, Yaqun Fang, Tongwei Ren, Gangshan Wu
{"title":"Multimodal Analysis for Deep Video Understanding with Video Language Transformer","authors":"Beibei Zhang, Yaqun Fang, Tongwei Ren, Gangshan Wu","doi":"10.1145/3503161.3551600","DOIUrl":null,"url":null,"abstract":"The Deep Video Understanding Challenge (DVUC) is aimed to use multiple modality information to build high-level understanding of video, involving tasks such as relationship recognition and interaction detection. In this paper, we use a joint learning framework to simultaneously predict multiple tasks with visual, text, audio and pose features. In addition, to answer the queries of DVUC, we design multiple answering strategies and use video language transformer which learns cross-modal information for matching videos with text choices. The final DVUC result shows that our method ranks first for group one of movie-level queries, and ranks third for both of group one and group two of scene-level queries.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3551600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Deep Video Understanding Challenge (DVUC) is aimed to use multiple modality information to build high-level understanding of video, involving tasks such as relationship recognition and interaction detection. In this paper, we use a joint learning framework to simultaneously predict multiple tasks with visual, text, audio and pose features. In addition, to answer the queries of DVUC, we design multiple answering strategies and use video language transformer which learns cross-modal information for matching videos with text choices. The final DVUC result shows that our method ranks first for group one of movie-level queries, and ranks third for both of group one and group two of scene-level queries.
基于视频语言转换器的深度视频理解多模态分析
深度视频理解挑战(DVUC)旨在使用多模态信息构建对视频的高级理解,包括关系识别和交互检测等任务。在本文中,我们使用一个联合学习框架来同时预测具有视觉、文本、音频和姿势特征的多个任务。此外,为了回答DVUC的查询,我们设计了多种回答策略,并使用学习跨模态信息的视频语言转换器进行视频与文本选择的匹配。最终的DVUC结果表明,我们的方法在第一组电影级查询中排名第一,在第一组和第二组场景级查询中排名第三。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信