Drug-Drug Interactions Prediction Based on Drug Embedding and Graph Auto-Encoder

Sukannya Purkayastha, Ishani Mondal, S. Sarkar, Pawan Goyal, J. Pillai
{"title":"Drug-Drug Interactions Prediction Based on Drug Embedding and Graph Auto-Encoder","authors":"Sukannya Purkayastha, Ishani Mondal, S. Sarkar, Pawan Goyal, J. Pillai","doi":"10.1109/BIBE.2019.00104","DOIUrl":null,"url":null,"abstract":"Identification of potential Drug-Drug Interactions (DDI) for newly developed drugs is essential in public healthcare. Computational methods of DDI prediction rely on known interactions to learn possible interaction between drug pairs whose interactions are unknown. Past work has used various similarity measures of drugs to predict DDIs. In this paper, we propose an effective approach to DDI Prediction using rich drug representations utilizing multiple knowledge sources. We have used the Drug-Target Interaction (DTI) Network to learn an embedding of drugs by using the metapath2vec algorithm. We have also used drug representation gained from the rich chemical structure representation of drugs using Variational Auto-Encoder. The DDI prediction problem is modeled as a link prediction problem in the DDI network containing known interactions. We represent the nodes in the DDI network as their embeddings. We apply a link prediction algorithm based on Graph Auto-Encoders to predict additional edges in this network, which are potential interactions. We have evaluated our approach on three benchmark DDI datasets, namely DrugBank, SemMedDB, and BioSNAP. Experimental results demonstrate that the proposed method outperforms the prior methods in terms of several performance metrics (AUC, AUPR, and F1-score) on all the datasets. Furthermore, we have also evaluated the role of the individual type of drug representation embeddings in boosting up the performance of DDI Prediction.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Identification of potential Drug-Drug Interactions (DDI) for newly developed drugs is essential in public healthcare. Computational methods of DDI prediction rely on known interactions to learn possible interaction between drug pairs whose interactions are unknown. Past work has used various similarity measures of drugs to predict DDIs. In this paper, we propose an effective approach to DDI Prediction using rich drug representations utilizing multiple knowledge sources. We have used the Drug-Target Interaction (DTI) Network to learn an embedding of drugs by using the metapath2vec algorithm. We have also used drug representation gained from the rich chemical structure representation of drugs using Variational Auto-Encoder. The DDI prediction problem is modeled as a link prediction problem in the DDI network containing known interactions. We represent the nodes in the DDI network as their embeddings. We apply a link prediction algorithm based on Graph Auto-Encoders to predict additional edges in this network, which are potential interactions. We have evaluated our approach on three benchmark DDI datasets, namely DrugBank, SemMedDB, and BioSNAP. Experimental results demonstrate that the proposed method outperforms the prior methods in terms of several performance metrics (AUC, AUPR, and F1-score) on all the datasets. Furthermore, we have also evaluated the role of the individual type of drug representation embeddings in boosting up the performance of DDI Prediction.
基于药物嵌入和图自编码器的药物-药物相互作用预测
鉴定新开发药物的潜在药物相互作用(DDI)在公共卫生中是必不可少的。DDI预测的计算方法依赖于已知的相互作用来学习相互作用未知的药物对之间可能的相互作用。过去的研究使用了各种药物的相似度来预测ddi。在本文中,我们提出了一种有效的DDI预测方法,该方法利用多个知识来源使用丰富的药物表示。我们使用药物-靶标相互作用(DTI)网络通过metapath2vec算法来学习药物的嵌入。我们还使用变分自编码器从药物丰富的化学结构表示中获得的药物表示。将DDI预测问题建模为包含已知相互作用的DDI网络中的链路预测问题。我们将DDI网络中的节点表示为它们的嵌入。我们采用基于图自编码器的链路预测算法来预测该网络中的附加边,这些边是潜在的相互作用。我们已经在三个基准DDI数据集(即DrugBank、SemMedDB和BioSNAP)上评估了我们的方法。实验结果表明,该方法在所有数据集上的性能指标(AUC、AUPR和F1-score)均优于先前的方法。此外,我们还评估了个体类型的药物表示嵌入在提高DDI预测性能方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信