An Attentional Multi-scale Co-evolving Model for Dynamic Link Prediction

Guozhen Zhang, Tian Ye, Depeng Jin, Yong Li
{"title":"An Attentional Multi-scale Co-evolving Model for Dynamic Link Prediction","authors":"Guozhen Zhang, Tian Ye, Depeng Jin, Yong Li","doi":"10.1145/3543507.3583396","DOIUrl":null,"url":null,"abstract":"Dynamic link prediction is essential for a wide range of domains, including social networks, bioinformatics, knowledge bases, and recommender systems. Existing works have demonstrated that structural information and temporal information are two of the most important information for this problem. However, existing works either focus on modeling them independently or modeling the temporal dynamics of a single structural scale, neglecting the complex correlations among them. This paper proposes to model the inherent correlations among the evolving dynamics of different structural scales for dynamic link prediction. Following this idea, we propose an Attentional Multi-scale Co-evolving Network (AMCNet). Specifically, We model multi-scale structural information by a motif-based graph neural network with multi-scale pooling. Then, we design a hierarchical attention-based sequence-to-sequence model for learning the complex correlations among the evolution dynamics of different structural scales. Extensive experiments on four real-world datasets with different characteristics demonstrate that AMCNet significantly outperforms the state-of-the-art in both single-step and multi-step dynamic link prediction tasks.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dynamic link prediction is essential for a wide range of domains, including social networks, bioinformatics, knowledge bases, and recommender systems. Existing works have demonstrated that structural information and temporal information are two of the most important information for this problem. However, existing works either focus on modeling them independently or modeling the temporal dynamics of a single structural scale, neglecting the complex correlations among them. This paper proposes to model the inherent correlations among the evolving dynamics of different structural scales for dynamic link prediction. Following this idea, we propose an Attentional Multi-scale Co-evolving Network (AMCNet). Specifically, We model multi-scale structural information by a motif-based graph neural network with multi-scale pooling. Then, we design a hierarchical attention-based sequence-to-sequence model for learning the complex correlations among the evolution dynamics of different structural scales. Extensive experiments on four real-world datasets with different characteristics demonstrate that AMCNet significantly outperforms the state-of-the-art in both single-step and multi-step dynamic link prediction tasks.
动态链路预测的注意多尺度协同进化模型
动态链接预测在广泛的领域是必不可少的,包括社会网络、生物信息学、知识库和推荐系统。已有的研究表明,结构信息和时间信息是解决这一问题的两个最重要的信息。然而,现有的研究要么是对它们进行独立建模,要么是对单个结构尺度的时间动态建模,而忽略了它们之间的复杂关联。本文提出建立不同结构尺度演化动力学之间的内在关联模型,用于动态链接预测。基于这一思想,我们提出了一个关注多尺度协同进化网络(AMCNet)。具体来说,我们利用基于多尺度池化的图形神经网络对多尺度结构信息进行建模。然后,我们设计了一个基于层次注意的序列到序列模型来学习不同结构尺度的进化动态之间的复杂关联。在四个具有不同特征的真实数据集上进行的大量实验表明,AMCNet在单步和多步动态链路预测任务中都明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信