Discrete Hilbert Transform via Memristor Crossbars for Compact Biosignal Processing

Lei Zhang, Zhuolin Yang, Kedar K. Aras, Igor R. Efimov, G. Adam
{"title":"Discrete Hilbert Transform via Memristor Crossbars for Compact Biosignal Processing","authors":"Lei Zhang, Zhuolin Yang, Kedar K. Aras, Igor R. Efimov, G. Adam","doi":"10.1109/AICT55583.2022.10013604","DOIUrl":null,"url":null,"abstract":"The Hilbert transform is widely used in biomedical signal processing and requires efficient implementation. We propose the implementation of the discrete Hilbert transform based on emerging memristor devices. It uses two matrix multiplication layers using weights programmed in the memristor array and a linear Hadamard product calculation layer mappable to CMOS. The functionality was tested on a dataset of optical cardiac signals from the human heart. The results show negligible <1% angle error between the proposed implementation and the MATLAB function. It also has robustness to non-idealities. This proposed solution can be applied to bio-signal processing at the edge.","PeriodicalId":441475,"journal":{"name":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT55583.2022.10013604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Hilbert transform is widely used in biomedical signal processing and requires efficient implementation. We propose the implementation of the discrete Hilbert transform based on emerging memristor devices. It uses two matrix multiplication layers using weights programmed in the memristor array and a linear Hadamard product calculation layer mappable to CMOS. The functionality was tested on a dataset of optical cardiac signals from the human heart. The results show negligible <1% angle error between the proposed implementation and the MATLAB function. It also has robustness to non-idealities. This proposed solution can be applied to bio-signal processing at the edge.
基于忆阻交叉棒的离散希尔伯特变换在紧凑生物信号处理中的应用
希尔伯特变换在生物医学信号处理中应用广泛,需要高效实现。我们提出了基于新兴忆阻器器件的离散希尔伯特变换的实现。它使用两个矩阵乘法层,使用在忆阻器阵列中编程的权重和一个可映射到CMOS的线性哈达玛乘积计算层。该功能在来自人类心脏的光学心脏信号数据集上进行了测试。结果表明,所提出的实现与MATLAB函数之间的角度误差小于1%,可以忽略不计。它对非理想性也具有鲁棒性。该方法可应用于边缘的生物信号处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信