Sliding Mode Control of Flexible Joint Using Gaussian Radial Basis Function Neural Networks

F. Farivar, M. A. Shoorehdeli, M. Nekoui, M. Teshnehlab
{"title":"Sliding Mode Control of Flexible Joint Using Gaussian Radial Basis Function Neural Networks","authors":"F. Farivar, M. A. Shoorehdeli, M. Nekoui, M. Teshnehlab","doi":"10.1109/ICCEE.2008.131","DOIUrl":null,"url":null,"abstract":"This paper, describes a hybrid control method to control a flexible joint. Dynamic equation of the system has been derived. The designed controllers consist of two parts: classical controller, which is a Linear Quadratic Regulation (LQR), and a hybrid controller,utilizing sliding mode control using Gaussian Radial Basis Function Neural Networks (RBFNN). The RBFNN is trained during the control process and it is not necessary to be trained off-line.","PeriodicalId":365473,"journal":{"name":"2008 International Conference on Computer and Electrical Engineering","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2008.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper, describes a hybrid control method to control a flexible joint. Dynamic equation of the system has been derived. The designed controllers consist of two parts: classical controller, which is a Linear Quadratic Regulation (LQR), and a hybrid controller,utilizing sliding mode control using Gaussian Radial Basis Function Neural Networks (RBFNN). The RBFNN is trained during the control process and it is not necessary to be trained off-line.
基于高斯径向基神经网络的柔性关节滑模控制
本文介绍了一种用于柔性关节控制的混合控制方法。推导了系统的动力学方程。所设计的控制器由线性二次调节(LQR)的经典控制器和基于高斯径向基函数神经网络(RBFNN)的滑模控制的混合控制器两部分组成。RBFNN是在控制过程中训练的,不需要离线训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信