Huntsville, hospitals, and hockey teams: Names can reveal your location

NUT@EMNLP Pub Date : 2017-09-01 DOI:10.18653/v1/W17-4415
Bahar Salehi, Dirk Hovy, E. Hovy, Anders Søgaard
{"title":"Huntsville, hospitals, and hockey teams: Names can reveal your location","authors":"Bahar Salehi, Dirk Hovy, E. Hovy, Anders Søgaard","doi":"10.18653/v1/W17-4415","DOIUrl":null,"url":null,"abstract":"Geolocation is the task of identifying a social media user’s primary location, and in natural language processing, there is a growing literature on to what extent automated analysis of social media posts can help. However, not all content features are equally revealing of a user’s location. In this paper, we evaluate nine name entity (NE) types. Using various metrics, we find that GEO-LOC, FACILITY and SPORT-TEAM are more informative for geolocation than other NE types. Using these types, we improve geolocation accuracy and reduce distance error over various famous text-based methods.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Geolocation is the task of identifying a social media user’s primary location, and in natural language processing, there is a growing literature on to what extent automated analysis of social media posts can help. However, not all content features are equally revealing of a user’s location. In this paper, we evaluate nine name entity (NE) types. Using various metrics, we find that GEO-LOC, FACILITY and SPORT-TEAM are more informative for geolocation than other NE types. Using these types, we improve geolocation accuracy and reduce distance error over various famous text-based methods.
亨茨维尔、医院和冰球队:名字可以透露你的位置
地理定位是识别社交媒体用户的主要位置的任务,在自然语言处理中,关于社交媒体帖子的自动分析能在多大程度上提供帮助的文献越来越多。然而,并不是所有的内容功能都能同样暴露用户的位置。在本文中,我们评估了九种名称实体(NE)类型。使用各种指标,我们发现GEO-LOC、FACILITY和SPORT-TEAM比其他网元类型更能提供地理定位信息。使用这些类型,我们提高了地理定位精度,并减少了各种著名的基于文本的方法的距离误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信