Product rating prediction using trust relationships in social networks

A. Davoudi, M. Chatterjee
{"title":"Product rating prediction using trust relationships in social networks","authors":"A. Davoudi, M. Chatterjee","doi":"10.1109/CCNC.2016.7444742","DOIUrl":null,"url":null,"abstract":"Traditional recommender systems assume that all users are independent and identically distributed, and ignores the social interactions and connections between users. These issues hinder the recommender systems from providing more personalized recommendations to the users. In this paper, we propose a social trust model and use the probabilistic matrix factorization method to estimate users taste by incorporating user-item rating matrix. The effect of users friends tastes is modeled using a trust model which is defined based on importance (i.e., centrality) and similarity between users. Similarity is modeled using Vector Space Similarity (VSS) algorithm and centrality is quantified using two different centrality measures (degree and eigen-vector centrality). To validate the proposed method, rating estimation is performed on the Epinions dataset. Experiments show that our method provides better prediction when using trust relationship based on centrality and similarity values rather than using the binary values. The contributions of centrality and similarity in the trust values vary with different measures of centrality.","PeriodicalId":399247,"journal":{"name":"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2016.7444742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Traditional recommender systems assume that all users are independent and identically distributed, and ignores the social interactions and connections between users. These issues hinder the recommender systems from providing more personalized recommendations to the users. In this paper, we propose a social trust model and use the probabilistic matrix factorization method to estimate users taste by incorporating user-item rating matrix. The effect of users friends tastes is modeled using a trust model which is defined based on importance (i.e., centrality) and similarity between users. Similarity is modeled using Vector Space Similarity (VSS) algorithm and centrality is quantified using two different centrality measures (degree and eigen-vector centrality). To validate the proposed method, rating estimation is performed on the Epinions dataset. Experiments show that our method provides better prediction when using trust relationship based on centrality and similarity values rather than using the binary values. The contributions of centrality and similarity in the trust values vary with different measures of centrality.
基于社交网络信任关系的产品评级预测
传统的推荐系统假设所有的用户都是独立的、同分布的,忽略了用户之间的社会互动和联系。这些问题阻碍了推荐系统向用户提供更加个性化的推荐。在本文中,我们提出了一个社会信任模型,并利用概率矩阵分解方法结合用户-物品评价矩阵来估计用户的品味。使用基于用户之间的重要性(即中心性)和相似性定义的信任模型来建模用户朋友品味的影响。使用向量空间相似度(VSS)算法对相似性进行建模,并使用两种不同的中心性度量(度和特征向量中心性)对中心性进行量化。为了验证所提出的方法,对Epinions数据集进行了评级估计。实验表明,该方法在使用基于中心性和相似度的信任关系时比使用二元值预测效果更好。中心性和相似性对信任值的贡献随中心性度量的不同而不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信