Stochastic differential equations

R. Erban, S. Chapman
{"title":"Stochastic differential equations","authors":"R. Erban, S. Chapman","doi":"10.1090/gsm/199/07","DOIUrl":null,"url":null,"abstract":"This chapter introduces stochastic differential equations (SDEs) from the computational point of view, starting with several examples to illustrate the computational definition of the SDE that is used throughout the book. The Fokker–Planck and Kolmogorov backward equations are then derived and their consequences presented. They are used to compute the mean transition time between favourable states of SDEs. The SDE formalism is then applied to a chemical system by deriving the chemical Fokker–Planck equation and the corresponding chemical Langevin equation. They are used to further analyse the chemical systems from Chapter 2, including the system with multiple favourable states and the self-induced stochastic resonance.","PeriodicalId":337867,"journal":{"name":"Applied Stochastic Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/gsm/199/07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter introduces stochastic differential equations (SDEs) from the computational point of view, starting with several examples to illustrate the computational definition of the SDE that is used throughout the book. The Fokker–Planck and Kolmogorov backward equations are then derived and their consequences presented. They are used to compute the mean transition time between favourable states of SDEs. The SDE formalism is then applied to a chemical system by deriving the chemical Fokker–Planck equation and the corresponding chemical Langevin equation. They are used to further analyse the chemical systems from Chapter 2, including the system with multiple favourable states and the self-induced stochastic resonance.
随机微分方程
本章从计算的角度介绍了随机微分方程(SDEs),从几个例子开始,说明整个书中使用的SDE的计算定义。然后推导了福克-普朗克和柯尔莫哥洛夫反向方程,并给出了它们的结果。它们被用来计算sde有利状态之间的平均过渡时间。然后,通过推导化学Fokker-Planck方程和相应的化学Langevin方程,将SDE形式化应用于化学系统。用它们进一步分析了第二章的化学系统,包括多有利态系统和自诱导随机共振系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信