CLIQUE: Clustering based on density on web usage data: Experiments and test results

K. Santhisree, A. Damodaram
{"title":"CLIQUE: Clustering based on density on web usage data: Experiments and test results","authors":"K. Santhisree, A. Damodaram","doi":"10.1109/ICECTECH.2011.5941893","DOIUrl":null,"url":null,"abstract":"Clustering web sessions is to group web sessions based on similarity and consists of minimizing the intra-group similarity and maximizing the inter-group similarity. The other question that arises is how to measure similarity between web sessions. Here in this paper we adopted a CLIQUE (CLUstering in QUEst) algorithm for clustering web sessions for web personalization. Then we adopted various similarity measures like Euclidean distance, projected Euclidean distance Jaccard, cosine and fuzzy dissimilarity measures to measure the similarity of web sessions using sequence alignment to determine learning behaviors. This has significant results when comparing similarities between web sessions with various measures, we performed a variety of experiments in the context of density based clustering, based on sequence alignment to measure similarities between web sessions where sessions are chronologically ordered sequences of page visits.","PeriodicalId":184011,"journal":{"name":"2011 3rd International Conference on Electronics Computer Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Electronics Computer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTECH.2011.5941893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Clustering web sessions is to group web sessions based on similarity and consists of minimizing the intra-group similarity and maximizing the inter-group similarity. The other question that arises is how to measure similarity between web sessions. Here in this paper we adopted a CLIQUE (CLUstering in QUEst) algorithm for clustering web sessions for web personalization. Then we adopted various similarity measures like Euclidean distance, projected Euclidean distance Jaccard, cosine and fuzzy dissimilarity measures to measure the similarity of web sessions using sequence alignment to determine learning behaviors. This has significant results when comparing similarities between web sessions with various measures, we performed a variety of experiments in the context of density based clustering, based on sequence alignment to measure similarities between web sessions where sessions are chronologically ordered sequences of page visits.
CLIQUE:基于web使用数据密度的聚类:实验和测试结果
聚类web会话是基于相似度对web会话进行分组,包括最小化组内相似度和最大化组间相似度。出现的另一个问题是如何衡量web会话之间的相似性。本文采用CLIQUE (CLUstering in QUEst)算法对web会话进行聚类,实现web个性化。然后,我们采用欧氏距离、投影欧氏距离、Jaccard、余弦和模糊不相似度等多种相似度度量来度量web会话的相似度,利用序列比对来确定学习行为。当用不同的度量方法比较web会话之间的相似性时,这有显著的结果,我们在基于密度的聚类背景下进行了各种实验,基于序列对齐来测量web会话之间的相似性,其中会话是按时间顺序排列的页面访问序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信