{"title":"The General Vector Addition System Reachability Problem by Presburger Inductive Invariants","authors":"Jérôme Leroux","doi":"10.2168/LMCS-6(3:22)2010","DOIUrl":null,"url":null,"abstract":"The reachability problem for Vector Addition Systems (VASs) is a central problem of net theory. The general problem is known decidable by algorithms exclusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney decomposition. This decomposition is used in this paper to prove that the Parikh images of languages accepted by VASs are semi-pseudo-linear; a class that extends the semi-linear sets, a.k.a. the sets definable in the Presburger arithmetic. We provide an application of this result; we prove that a final configuration is not reachable from an initial one if and only if there exists a Presburger formula denoting a forward inductive invariant that contains the initial configuration but not the final one. Since we can decide if a Preburger formula denotes an inductive invariant, we deduce that there exist checkable certificates of non-reachability. In particular, there exists a simple algorithm for deciding the general VAS reachability problem based on two semi-algorithms. A first one that tries to prove the reachability by enumerating finite sequences of actions and a second one that tries to prove the non-reachability by enumerating Presburger formulas.","PeriodicalId":415902,"journal":{"name":"2009 24th Annual IEEE Symposium on Logic In Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Symposium on Logic In Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2168/LMCS-6(3:22)2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78
Abstract
The reachability problem for Vector Addition Systems (VASs) is a central problem of net theory. The general problem is known decidable by algorithms exclusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-Tenney decomposition. This decomposition is used in this paper to prove that the Parikh images of languages accepted by VASs are semi-pseudo-linear; a class that extends the semi-linear sets, a.k.a. the sets definable in the Presburger arithmetic. We provide an application of this result; we prove that a final configuration is not reachable from an initial one if and only if there exists a Presburger formula denoting a forward inductive invariant that contains the initial configuration but not the final one. Since we can decide if a Preburger formula denotes an inductive invariant, we deduce that there exist checkable certificates of non-reachability. In particular, there exists a simple algorithm for deciding the general VAS reachability problem based on two semi-algorithms. A first one that tries to prove the reachability by enumerating finite sequences of actions and a second one that tries to prove the non-reachability by enumerating Presburger formulas.