Experimental Investigation of an R134a Loop Thermosiphon for Shaft Cooling

Li Fajing, Jianmin Gao, Guangwei Jiang, Liang Xu, F. Liang
{"title":"Experimental Investigation of an R134a Loop Thermosiphon for Shaft Cooling","authors":"Li Fajing, Jianmin Gao, Guangwei Jiang, Liang Xu, F. Liang","doi":"10.1115/IMECE2018-88548","DOIUrl":null,"url":null,"abstract":"Shaft cooling based on a loop thermosiphon is an ideal method for cooling of motorized spindles since it transfers heat with high efficiency and does not require an external power supply. In this study, an experiment was conducted on an R134a single-loop thermosiphon when the evaporation and condensation sections were on the same pipe. Results indicated that the single-loop thermosiphon was still operational with a minimum average thermal resistance of 0.51 W/°C when the filling ratio (FR) was 40%. The temperature distribution of the test specimen was determined predominantly by the amount of heating power, and not the mode. The optimum liquid filling ratio was 40% – 60% under this special condition, and both the thermal resistance and the heat transfer limit increased with the increase of FR in this range. The maximum temperature of the 150SD motorized spindle decreased 29% with the use of the R134a shaft cooling structure.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Shaft cooling based on a loop thermosiphon is an ideal method for cooling of motorized spindles since it transfers heat with high efficiency and does not require an external power supply. In this study, an experiment was conducted on an R134a single-loop thermosiphon when the evaporation and condensation sections were on the same pipe. Results indicated that the single-loop thermosiphon was still operational with a minimum average thermal resistance of 0.51 W/°C when the filling ratio (FR) was 40%. The temperature distribution of the test specimen was determined predominantly by the amount of heating power, and not the mode. The optimum liquid filling ratio was 40% – 60% under this special condition, and both the thermal resistance and the heat transfer limit increased with the increase of FR in this range. The maximum temperature of the 150SD motorized spindle decreased 29% with the use of the R134a shaft cooling structure.
R134a轴冷回路热虹吸的实验研究
基于循环热虹吸的轴冷却是一种理想的冷却电主轴的方法,因为它以高效率传递热量,不需要外部电源。本研究在R134a单回路热虹吸管上进行了蒸发段和冷凝段在同一管道上的实验。结果表明,当填充比(FR)为40%时,单回路热虹吸仍能正常工作,平均热阻最小为0.51 W/°C。试样的温度分布主要取决于加热功率的大小,而不是模式。在此特殊条件下,最佳充液比为40% ~ 60%,在此范围内,热阻和传热极限均随着FR的增大而增大。采用R134a轴冷却结构后,150SD电主轴的最高温度降低了29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信