Evaluation of Cross Domain Text Summarization

Liam Scanlon, Shiwei Zhang, Xiuzhen Zhang, M. Sanderson
{"title":"Evaluation of Cross Domain Text Summarization","authors":"Liam Scanlon, Shiwei Zhang, Xiuzhen Zhang, M. Sanderson","doi":"10.1145/3397271.3401285","DOIUrl":null,"url":null,"abstract":"Extractive-abstractive hybrid summarization can generate readable, concise summaries for long documents. Extraction-then-abstraction and extraction-with-abstraction are two representative approaches to hybrid summarization. But their general performance is yet to be evaluated by large scale experiments.We examined two state-of-the-art hybrid summarization algorithms from three novel perspectives: we applied them to a form of headline generation not previously tried, we evaluated the generalization of the algorithms by testing them both within and across news domains; and we compared the automatic assessment of the algorithms to human comparative judgments. It is found that an extraction-then-abstraction hybrid approach outperforms an extraction-with-abstraction approach, particularly for cross-domain headline generation.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Extractive-abstractive hybrid summarization can generate readable, concise summaries for long documents. Extraction-then-abstraction and extraction-with-abstraction are two representative approaches to hybrid summarization. But their general performance is yet to be evaluated by large scale experiments.We examined two state-of-the-art hybrid summarization algorithms from three novel perspectives: we applied them to a form of headline generation not previously tried, we evaluated the generalization of the algorithms by testing them both within and across news domains; and we compared the automatic assessment of the algorithms to human comparative judgments. It is found that an extraction-then-abstraction hybrid approach outperforms an extraction-with-abstraction approach, particularly for cross-domain headline generation.
跨领域文本摘要的评价
抽取-抽象混合摘要可以为长文档生成可读的、简洁的摘要。先提取后抽象和先提取后抽象是混合摘要的两种代表性方法。但它们的总体性能还有待于大规模实验的评估。我们从三个新颖的角度研究了两种最先进的混合摘要算法:我们将它们应用于以前从未尝试过的标题生成形式,我们通过在新闻域内和跨新闻域测试来评估算法的泛化性;我们将算法的自动评估与人类的比较判断进行了比较。研究发现,提取-抽象-混合方法优于提取-抽象方法,特别是对于跨域标题生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信