Integrating Quantum Computing into De Novo Metabolite Identification

Li-An Tsai, E. Nuckels, Yingfeng Wang
{"title":"Integrating Quantum Computing into De Novo Metabolite Identification","authors":"Li-An Tsai, E. Nuckels, Yingfeng Wang","doi":"10.54808/imcic2023.01.84","DOIUrl":null,"url":null,"abstract":"Tandem mass spectrometry (MS/MS) is a widely used technology for identifying metabolites. De novo metabolite identification is an identification strategy that does not refer to any spectral or metabolite database. However, this strategy is time-consuming and cannot meet the need for high-throughput metabolite identification. Böcker et al. converted the de novo identification problem into the maximum colorful subtree (MCS) problem. Unfortunately, the MCS problem is NPhard, which indicates there are no existing efficient exact algorithms. To address this issue, we propose to apply quantum computing to accelerate metabolite identification. Quantum computing performs computations on quantum computers. The recent progress in this area has brought the hope of making some computationally intractable areas trackable, although there are still no general approaches to converting regular computer algorithms into quantum algorithms. Specifically, there is no efficient quantum algorithm for the MCS problem. The MCS problem can be considered as the combination of many maximum spanning tree problems that can be converted into minimum spanning tree problems. This work applies a quantum algorithm designed for the minimum spanning problem to speed up de novo metabolite identification. The possible strategy for further improving the performance is also briefly discussed.","PeriodicalId":389441,"journal":{"name":"Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics: IMCIC 2023","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Multi-Conference on Complexity, Informatics and Cybernetics: IMCIC 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54808/imcic2023.01.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tandem mass spectrometry (MS/MS) is a widely used technology for identifying metabolites. De novo metabolite identification is an identification strategy that does not refer to any spectral or metabolite database. However, this strategy is time-consuming and cannot meet the need for high-throughput metabolite identification. Böcker et al. converted the de novo identification problem into the maximum colorful subtree (MCS) problem. Unfortunately, the MCS problem is NPhard, which indicates there are no existing efficient exact algorithms. To address this issue, we propose to apply quantum computing to accelerate metabolite identification. Quantum computing performs computations on quantum computers. The recent progress in this area has brought the hope of making some computationally intractable areas trackable, although there are still no general approaches to converting regular computer algorithms into quantum algorithms. Specifically, there is no efficient quantum algorithm for the MCS problem. The MCS problem can be considered as the combination of many maximum spanning tree problems that can be converted into minimum spanning tree problems. This work applies a quantum algorithm designed for the minimum spanning problem to speed up de novo metabolite identification. The possible strategy for further improving the performance is also briefly discussed.
将量子计算集成到从头代谢物鉴定中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信