{"title":"Appearance-based localization using Group LASSO regression with an indoor experiment","authors":"Huan N. Do, Jongeun Choi, C. Lim, T. Maiti","doi":"10.1109/AIM.2015.7222667","DOIUrl":null,"url":null,"abstract":"This paper proposes appearance-based localization using online vision images collected from an omnidirectional camera attached on a mobile robot or a vehicle. Our approach builds on a combination of the group Least Absolute Shrinkage and Selection Operator (LASSO) and the extended Kalman filter (EKF). Fast Fourier transform (FFT) and Histogram are extracted from omni-directional images, the features of which are selected via the group LASSO regression. The EKF takes the output of the group LASSO regression based first-stage localization as the observation. The indoor experimental results demonstrate the effectiveness of our approach.","PeriodicalId":199432,"journal":{"name":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2015.7222667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper proposes appearance-based localization using online vision images collected from an omnidirectional camera attached on a mobile robot or a vehicle. Our approach builds on a combination of the group Least Absolute Shrinkage and Selection Operator (LASSO) and the extended Kalman filter (EKF). Fast Fourier transform (FFT) and Histogram are extracted from omni-directional images, the features of which are selected via the group LASSO regression. The EKF takes the output of the group LASSO regression based first-stage localization as the observation. The indoor experimental results demonstrate the effectiveness of our approach.