Identifying Spammers to Boost Crowdsourced Classification

Panagiotis A. Traganitis, G. Giannakis
{"title":"Identifying Spammers to Boost Crowdsourced Classification","authors":"Panagiotis A. Traganitis, G. Giannakis","doi":"10.1109/ICASSP39728.2021.9414242","DOIUrl":null,"url":null,"abstract":"The present work addresses the problem of adversarial attacks in unsupervised ensemble or crowdsourcing classification tasks. Under certain conditions, it is shown, both analytically and through numerical tests, that spammers cause the most damage with respect to classification performance. To curb their effect, a novel spectral algorithm for spammer detection that utilizes second-order statistics of annotators, is developed and preliminary results on synthetic and real data showcase the potential of this approach.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The present work addresses the problem of adversarial attacks in unsupervised ensemble or crowdsourcing classification tasks. Under certain conditions, it is shown, both analytically and through numerical tests, that spammers cause the most damage with respect to classification performance. To curb their effect, a novel spectral algorithm for spammer detection that utilizes second-order statistics of annotators, is developed and preliminary results on synthetic and real data showcase the potential of this approach.
识别垃圾邮件发送者以促进众包分类
目前的工作解决了无监督集成或众包分类任务中的对抗性攻击问题。在某些条件下,通过分析和数值测试表明,垃圾邮件发送者对分类性能造成的损害最大。为了抑制它们的影响,开发了一种利用注释器二阶统计量的新的频谱算法来检测垃圾邮件,并且在合成数据和实际数据上的初步结果显示了这种方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信