Adaptive Square-Root Unscented Kalman Filter: Implementation of Exponential Forgetting Factor

Reza Mohammadi Asl, Y. S. Hagh, A. Fekih, H. Handroos
{"title":"Adaptive Square-Root Unscented Kalman Filter: Implementation of Exponential Forgetting Factor","authors":"Reza Mohammadi Asl, Y. S. Hagh, A. Fekih, H. Handroos","doi":"10.1109/ICCAR49639.2020.9108044","DOIUrl":null,"url":null,"abstract":"This paper proposes a new form of adaptive square root unscented Kalman filter that implements an exponential forgetting factor to update the filter. It aims at estimating the states of nonlinear systems without a priori knowledge about the statistics of noises. The filter updates the estimation of covariances of noises with time, and the updated covariances are used to update the states of the system. The proposed approach is implemented to a servo-hydraulic system which states and measurements are affected by time varying noises with time-varying statistics. The obtained results along with the mean square errors of the estimation of states confirmed the performance and precision of the proposed filter.","PeriodicalId":412255,"journal":{"name":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR49639.2020.9108044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new form of adaptive square root unscented Kalman filter that implements an exponential forgetting factor to update the filter. It aims at estimating the states of nonlinear systems without a priori knowledge about the statistics of noises. The filter updates the estimation of covariances of noises with time, and the updated covariances are used to update the states of the system. The proposed approach is implemented to a servo-hydraulic system which states and measurements are affected by time varying noises with time-varying statistics. The obtained results along with the mean square errors of the estimation of states confirmed the performance and precision of the proposed filter.
自适应平方根无气味卡尔曼滤波:指数遗忘因子的实现
本文提出了一种新的自适应平方根无气味卡尔曼滤波器,该滤波器采用指数遗忘因子对滤波器进行更新。它旨在估计非线性系统的状态,而不需要先验的噪声统计知识。该滤波器对噪声的协方差估计随时间进行更新,更新后的协方差用于更新系统的状态。将该方法应用于状态和测量受时变噪声影响的伺服液压系统,该系统具有时变统计量。得到的结果以及状态估计的均方误差验证了所提滤波器的性能和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信