A comparison of two partial matching strategies for classification of unseen cases

J. Grzymala-Busse, G. Sudre
{"title":"A comparison of two partial matching strategies for classification of unseen cases","authors":"J. Grzymala-Busse, G. Sudre","doi":"10.1109/GRC.2006.1635921","DOIUrl":null,"url":null,"abstract":"This paper compares two partial matching strate- gies, selective and mixed, for classification of unseen cases. The selective partial matching is a novel approach for classification, while mixed partial matching was implemented in the LERS classification system several years ago. Though results of our experiments show that neither strategy is better than the other, an important conclusion is that it is crucial to implement both strategies since the correct choice of one of these strategies, for a specific data set, results in substantial improvement of the final classification.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper compares two partial matching strate- gies, selective and mixed, for classification of unseen cases. The selective partial matching is a novel approach for classification, while mixed partial matching was implemented in the LERS classification system several years ago. Though results of our experiments show that neither strategy is better than the other, an important conclusion is that it is crucial to implement both strategies since the correct choice of one of these strategies, for a specific data set, results in substantial improvement of the final classification.
未见病例分类中两种部分匹配策略的比较
本文比较了用于未见病例分类的两种部分匹配策略,即选择性匹配和混合匹配。选择性部分匹配是一种新的分类方法,而混合性部分匹配几年前已在 LERS 分类系统中实施。虽然我们的实验结果表明这两种策略各有优劣,但一个重要的结论是,实施这两种策略至关重要,因为针对特定的数据集,正确选择其中一种策略会大大提高最终的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信