A novel eigenvector-based technique for spectral estimation of time-domain data in medical imaging

G. Abousleman, R. Jordan, A. Asgharzadeh, L. D. Canady, D. Koechner, R. Griffey
{"title":"A novel eigenvector-based technique for spectral estimation of time-domain data in medical imaging","authors":"G. Abousleman, R. Jordan, A. Asgharzadeh, L. D. Canady, D. Koechner, R. Griffey","doi":"10.1109/CBMSYS.1990.109429","DOIUrl":null,"url":null,"abstract":"The use of a complex MUSIC (multiple signal classification) algorithm to signal average MR spectroscopic data from a 1-cm/sup 3/ voxel of diseased brain tissue for only five min and obtain diagnostically useful studies is discussed. A complex eigenvector-based method for performing spectral analysis of time-domain data independent of the signal-to-noise ratio is demonstrated. The implementation of the procedure requires no preprocessing of the time-domain data record. The technique is well suited for magnetic resonance spectroscopy and imaging, where the signal available from small regions corresponding to areas of diseased tissue in patients presenting for diagnosis is always dominated by the Johnson noise present in the receiver circuit.<<ETX>>","PeriodicalId":365366,"journal":{"name":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","volume":"1975 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMSYS.1990.109429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The use of a complex MUSIC (multiple signal classification) algorithm to signal average MR spectroscopic data from a 1-cm/sup 3/ voxel of diseased brain tissue for only five min and obtain diagnostically useful studies is discussed. A complex eigenvector-based method for performing spectral analysis of time-domain data independent of the signal-to-noise ratio is demonstrated. The implementation of the procedure requires no preprocessing of the time-domain data record. The technique is well suited for magnetic resonance spectroscopy and imaging, where the signal available from small regions corresponding to areas of diseased tissue in patients presenting for diagnosis is always dominated by the Johnson noise present in the receiver circuit.<>
基于特征向量的医学成像时域数据谱估计新技术
本文讨论了使用复杂的MUSIC(多信号分类)算法对患病脑组织1厘米/sup 3/体素的平均MR光谱数据进行5分钟的信号处理,并获得诊断有用的研究结果。一个复杂的特征向量为基础的方法进行频谱分析的时域数据独立的信噪比被证明。该程序的实现不需要对时域数据记录进行预处理。该技术非常适合于磁共振波谱和成像,在磁共振波谱和成像中,来自患病患者患病组织相应区域的小区域的信号总是被接收器电路中存在的约翰逊噪声所主导
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信