MixFaceNets: Extremely Efficient Face Recognition Networks

F. Boutros, N. Damer, Meiling Fang, Florian Kirchbuchner, Arjan Kuijper
{"title":"MixFaceNets: Extremely Efficient Face Recognition Networks","authors":"F. Boutros, N. Damer, Meiling Fang, Florian Kirchbuchner, Arjan Kuijper","doi":"10.1109/IJCB52358.2021.9484374","DOIUrl":null,"url":null,"abstract":"In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, Mix-FaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (≤ 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation over-head, which proves the practical value of our proposed Mix-FaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, Mix-FaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (≤ 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation over-head, which proves the practical value of our proposed Mix-FaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.
MixFaceNets:非常高效的人脸识别网络
在本文中,我们提出了一组非常高效和高吞吐量的精确人脸验证模型,混合深度卷积核的Mix-FaceNets。在Label Face in Wild (LFW)、Age-DB、megface和IARPA Janus benchmark IJB-B和IJB-C数据集上进行的大量实验评估表明,我们的MixFaceNets对于需要极低计算复杂度的应用程序是有效的。在相同的计算复杂度水平下(≤500M FLOPs),我们的MixFaceNets在所有评估的数据集上都优于MobileFaceNets,在LFW上达到99.60%的准确率,在AgeDB-30上达到97.05%的准确率,在MegaFace上达到93.60 TAR(在FAR1e-6),在ikb - b上达到90.94 TAR(在FAR1e-4),在ikb - c上达到93.08 TAR(在FAR1e-4)。在计算复杂度在500M到1G FLOPs之间的情况下,我们的MixFaceNets取得了与排名第一的模型相当的结果,同时使用了更少的FLOPs和更少的计算开销,这证明了我们提出的Mix-FaceNets的实用价值。所有训练代码、预训练模型和训练日志都已提供https://github.com/fdbtrs/mixfacenets。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信