{"title":"A Fast Spectral Method to Solve Document Cluster Ensemble Problem","authors":"Sen Xu, Zhimao Lu, Guochang Gu","doi":"10.1109/IMSCCS.2008.8","DOIUrl":null,"url":null,"abstract":"The critical problem in cluster ensemble is how to combine clusterers to yield a final superior clustering result. In this paper, we introduce a spectral method to solve document cluster ensemble problem. Since spectral clustering inevitably needs to compute the eigenvalues and eigenvectors of a matrix, for large scale document datasets, itpsilas computationally intractable. By using algebraic transformation to similarity matrix we get a feasible algorithm. Experiments on TREC and Reuters document sets show that our spectral algorithm yields better clustering results than other typical cluster ensemble techniques without high computational cost.","PeriodicalId":122953,"journal":{"name":"2008 International Multi-symposiums on Computer and Computational Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Multi-symposiums on Computer and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2008.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The critical problem in cluster ensemble is how to combine clusterers to yield a final superior clustering result. In this paper, we introduce a spectral method to solve document cluster ensemble problem. Since spectral clustering inevitably needs to compute the eigenvalues and eigenvectors of a matrix, for large scale document datasets, itpsilas computationally intractable. By using algebraic transformation to similarity matrix we get a feasible algorithm. Experiments on TREC and Reuters document sets show that our spectral algorithm yields better clustering results than other typical cluster ensemble techniques without high computational cost.