Faster Algorithms for Computing Plurality Points

M. D. Berg, Joachim Gudmundsson, M. Mehr
{"title":"Faster Algorithms for Computing Plurality Points","authors":"M. D. Berg, Joachim Gudmundsson, M. Mehr","doi":"10.1145/3186990","DOIUrl":null,"url":null,"abstract":"Let V be a set of n points in Rd, which we call voters. A point p ∈ Rd is preferred over another point p′ ∈ Rd by a voter υ ∈ V if dist(υ, p) < dist(υ, p′). A point p is called a plurality point if it is preferred by at least as many voters as any other point p′. We present an algorithm that decides in O(nlogn) time whether V admits a plurality point in the L2 norm and, if so, finds the (unique) plurality point. We also give efficient algorithms to compute a minimum-cost subset W ⊂ V such that V\\W admits a plurality point, and to compute a so-called minimum-radius plurality ball. Finally, we consider the problem in the personalized L1 norm, where each point υ ∈ V has a preference vector ⟨w1(υ),…,wd(υ)⟩ and the distance from υ to any point p ∈ Rd is given by ∑i=1d wi(υ)· |xi(υ)−xi(p)|. For this case we can compute in O(nd−1) time the set of all plurality points of V. When all preference vectors are equal, the running time improves to O(n).","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3186990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Let V be a set of n points in Rd, which we call voters. A point p ∈ Rd is preferred over another point p′ ∈ Rd by a voter υ ∈ V if dist(υ, p) < dist(υ, p′). A point p is called a plurality point if it is preferred by at least as many voters as any other point p′. We present an algorithm that decides in O(nlogn) time whether V admits a plurality point in the L2 norm and, if so, finds the (unique) plurality point. We also give efficient algorithms to compute a minimum-cost subset W ⊂ V such that V\W admits a plurality point, and to compute a so-called minimum-radius plurality ball. Finally, we consider the problem in the personalized L1 norm, where each point υ ∈ V has a preference vector ⟨w1(υ),…,wd(υ)⟩ and the distance from υ to any point p ∈ Rd is given by ∑i=1d wi(υ)· |xi(υ)−xi(p)|. For this case we can compute in O(nd−1) time the set of all plurality points of V. When all preference vectors are equal, the running time improves to O(n).
计算复数点的更快算法
设V是Rd中n个点的集合,我们称之为投票人。如果dist(υ, p) < dist(υ, p '),选民υ∈V更喜欢点p∈Rd而不是另一个点p '∈Rd。如果一个点p得到至少和其他点p一样多的选民的支持,就称为“多数点”。我们提出了一种算法,该算法在O(nlogn)时间内决定V在L2范数中是否有复数点,如果有,则找到(唯一的)复数点。我们还给出了计算最小代价子集W∧V使得V\W允许一个复数点的有效算法,以及计算一个所谓的最小半径复数球的有效算法。最后,我们考虑个性化L1范数中的问题,其中每个点υ∈V具有⟨w1(υ),…,wd(υ)⟩的偏好向量,并且从υ到任何点p∈Rd的距离由∑i=1d wi(υ)·|xi(υ)−xi(p)|给出。对于这种情况,我们可以在O(nd−1)时间内计算出v的所有复数点的集合。当所有偏好向量相等时,运行时间提高到O(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信