Evaluation of Cyber Deception Using Deep Learning Algorithms

Binayak Parashar
{"title":"Evaluation of Cyber Deception Using Deep Learning Algorithms","authors":"Binayak Parashar","doi":"10.2139/ssrn.3732881","DOIUrl":null,"url":null,"abstract":"A machine learning-based approach is proposed and actualized to measure cyber deceptive defenses with negligible human inclusion. This dodges obstructions related to deceptive examination on humans, amplifying robotized assessment's adequacy before human subject’s research must be attempted. Utilizing ongoing advances in profound learning, the methodology synthesizes realistic, interactive, and adaptive traffic for utilization by target web services. A contextual analysis applies how to assess an interruption identification framework furnished with application layer embedded deceptive reactions to attacks. Results exhibit that blending adaptive web traffic bound with hesitant attacks controlled by outfit learning, online adaptive metric learning, and novel class discovery to recreate able enemies comprises a forceful and challenging test of cyber deceptive defenses.","PeriodicalId":414708,"journal":{"name":"Urban Transportation eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Transportation eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3732881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A machine learning-based approach is proposed and actualized to measure cyber deceptive defenses with negligible human inclusion. This dodges obstructions related to deceptive examination on humans, amplifying robotized assessment's adequacy before human subject’s research must be attempted. Utilizing ongoing advances in profound learning, the methodology synthesizes realistic, interactive, and adaptive traffic for utilization by target web services. A contextual analysis applies how to assess an interruption identification framework furnished with application layer embedded deceptive reactions to attacks. Results exhibit that blending adaptive web traffic bound with hesitant attacks controlled by outfit learning, online adaptive metric learning, and novel class discovery to recreate able enemies comprises a forceful and challenging test of cyber deceptive defenses.
使用深度学习算法评估网络欺骗
提出并实现了一种基于机器学习的方法来测量可以忽略人为因素的网络欺骗防御。这避免了与对人类进行欺骗性检查有关的障碍,在必须尝试对人类受试者进行研究之前,放大了机器人评估的充分性。该方法利用深度学习领域的最新进展,综合了现实的、交互式的和自适应的流量,以供目标web服务使用。上下文分析应用于如何评估具有应用层嵌入的对攻击的欺骗性反应的中断识别框架。结果表明,将自适应网络流量与由装备学习、在线自适应度量学习和新类别发现控制的犹豫攻击相结合,以重建可复制的敌人,构成了对网络欺骗防御的有力且具有挑战性的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信