Travis Forbes, Benjamin Magstadt, J. Moody, Andrew Suchanek, Spencer Nelson
{"title":"A 0.2-2 GHz Time-Interleaved Multi-Stage Switched-Capacitor Delay Element Achieving 448.6 ns Delay and 330 ns/mm2 Area Efficiency","authors":"Travis Forbes, Benjamin Magstadt, J. Moody, Andrew Suchanek, Spencer Nelson","doi":"10.1109/RFIC54546.2022.9863079","DOIUrl":null,"url":null,"abstract":"A 0.2-2 GHz digitally programmable RF delay element based on a time-interleaved multi-stage switched-capacitor (TIMS-SC) approach is presented. The proposed approach enables hundreds of ns of broadband RF delay by employing sample time expansion in multiple stages of switched-capacitor storage elements. The delay element was implemented in a 45 nm SOI CMOS process and achieves a 2.55-448.6 ns programmable delay range with $< 0.12\\ \\ \\%$ delay variation across 1.8 GHz of bandwidth at maximum delay, 2.42 ns programmable delay steps, and 330 ns/mm2 area efficiency. The device achieves 24 dB gain, 7.1 dB noise figure, and consumes 80 mW from a 1 V supply with an active area of 1.36 mm2.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A 0.2-2 GHz digitally programmable RF delay element based on a time-interleaved multi-stage switched-capacitor (TIMS-SC) approach is presented. The proposed approach enables hundreds of ns of broadband RF delay by employing sample time expansion in multiple stages of switched-capacitor storage elements. The delay element was implemented in a 45 nm SOI CMOS process and achieves a 2.55-448.6 ns programmable delay range with $< 0.12\ \ \%$ delay variation across 1.8 GHz of bandwidth at maximum delay, 2.42 ns programmable delay steps, and 330 ns/mm2 area efficiency. The device achieves 24 dB gain, 7.1 dB noise figure, and consumes 80 mW from a 1 V supply with an active area of 1.36 mm2.