Impact Of Segmentation Parameters On The Classification Of VHR Images Acquired By RPAS

M. G. Lacerda, E. H. Shiguemori, A. Damiao, C. S. Anjos, M. Habermann
{"title":"Impact Of Segmentation Parameters On The Classification Of VHR Images Acquired By RPAS","authors":"M. G. Lacerda, E. H. Shiguemori, A. Damiao, C. S. Anjos, M. Habermann","doi":"10.1109/LAGIRS48042.2020.9165637","DOIUrl":null,"url":null,"abstract":"RPAs (Remotely Piloted Aircrafts) have been used in many Remote Sensing applications, featuring high-quality imaging sensors. In some situations, the images are interpreted in an automated fashion using object-oriented classification. In this case, the first step is segmentation. However, the setting of segmentation parameters such as scale, shape, and compactness may yield too many different segmentations, thus it is necessary to understand the influence of those parameters on the final output. This paper compares 24 segmentation parameter sets by taking into account classification scores. The results indicate that the segmentation parameters exert influence on both classification accuracy and processing time.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RPAs (Remotely Piloted Aircrafts) have been used in many Remote Sensing applications, featuring high-quality imaging sensors. In some situations, the images are interpreted in an automated fashion using object-oriented classification. In this case, the first step is segmentation. However, the setting of segmentation parameters such as scale, shape, and compactness may yield too many different segmentations, thus it is necessary to understand the influence of those parameters on the final output. This paper compares 24 segmentation parameter sets by taking into account classification scores. The results indicate that the segmentation parameters exert influence on both classification accuracy and processing time.
分割参数对RPAS获取的VHR图像分类的影响
rpa(遥控飞机)已用于许多遥感应用,具有高质量的成像传感器。在某些情况下,使用面向对象分类以自动方式解释图像。在这种情况下,第一步是分割。但是,分割参数如尺度、形状、紧凑度的设置可能会产生太多不同的分割,因此有必要了解这些参数对最终输出的影响。本文结合分类分数对24个分割参数集进行了比较。结果表明,分割参数对分类精度和处理时间都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信