Adaptive background model for moving objects based on PCA

M. H. Ghaeminia, S. B. Shokouhi
{"title":"Adaptive background model for moving objects based on PCA","authors":"M. H. Ghaeminia, S. B. Shokouhi","doi":"10.1109/IRANIANMVIP.2010.5941174","DOIUrl":null,"url":null,"abstract":"Background modeling and detecting moving objects in scene is a convenient method in many surveillance systems. We propose an approach that is useful in estimating background. In our approach, first each frame is divided to blocks, and blocks in frame sequences sorted to make block series. Finally PCA process applied to these block series. Based on PCA theorem if there is change in block series which means there is not pure background, the main component of block series is comparable to other components of series. By detecting these regions and neglecting it from scene a background modeled. This approach was known as multi block PCA which was used before for detection changes in images and now in this paper we apply it to video sequences adaptively. In this model dimension of database equals to number of frames which made block series. Also our experiments show that this method is robust in change illumination because the model is updated periodically. Moreover computational complexity of the algorithm and accuracy in localizing moving objects could be compared with other fast clustering based background modeling such as Mixture of Gaussian (MoG) and mean shift technique.","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Background modeling and detecting moving objects in scene is a convenient method in many surveillance systems. We propose an approach that is useful in estimating background. In our approach, first each frame is divided to blocks, and blocks in frame sequences sorted to make block series. Finally PCA process applied to these block series. Based on PCA theorem if there is change in block series which means there is not pure background, the main component of block series is comparable to other components of series. By detecting these regions and neglecting it from scene a background modeled. This approach was known as multi block PCA which was used before for detection changes in images and now in this paper we apply it to video sequences adaptively. In this model dimension of database equals to number of frames which made block series. Also our experiments show that this method is robust in change illumination because the model is updated periodically. Moreover computational complexity of the algorithm and accuracy in localizing moving objects could be compared with other fast clustering based background modeling such as Mixture of Gaussian (MoG) and mean shift technique.
基于PCA的运动目标自适应背景模型
背景建模和检测场景中的运动目标是许多监控系统的一种方便方法。我们提出了一种在估计背景时有用的方法。在我们的方法中,首先将每个帧划分为块,并将帧序列中的块排序成块序列。最后将PCA处理应用于这些块序列。根据PCA定理,如果块序列发生变化,即不存在纯背景,则块序列的主成分与序列的其他成分具有可比性。通过检测这些区域并将其从场景中忽略,建立了一个背景模型。这种方法被称为多块PCA,以前用于检测图像的变化,现在我们将其应用于视频序列的自适应检测。在该模型中,数据库的维数等于构成块序列的帧数。实验结果表明,该方法对光照变化具有较强的鲁棒性。此外,该算法的计算复杂度和定位运动目标的精度可与其他基于快速聚类的背景建模技术如混合高斯(MoG)和均值移位技术相比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信