D-record: Disaster Response and Relief Coordination Pipeline

Shruti Kar, Hussein S. Al-Olimat, K. Thirunarayan, V. Shalin, A. Sheth, S. Parthasarathy
{"title":"D-record: Disaster Response and Relief Coordination Pipeline","authors":"Shruti Kar, Hussein S. Al-Olimat, K. Thirunarayan, V. Shalin, A. Sheth, S. Parthasarathy","doi":"10.1145/3284566.3284572","DOIUrl":null,"url":null,"abstract":"We employ multi-modal data (i.e., unstructured text, gazetteers, and imagery) for location-centric demand/request matching in the context of disaster relief. After classifying the Need expressed in a tweet (the WHAT), we leverage OpenStreetMap to geolocate that Need on a computationally accessible map of the local terrain (the WHERE) populated with location features such as hospitals and housing. Further, our novel use of flood mapping based on satellite images of the affected area supports the elimination of candidate resources that are not accessible by road transportation. The resulting map-based visualization combines disaster-related tweets, imagery and pre-existing knowledge-base resources (gazetteers) to reduce decision-making latency and enhance resiliency by assisting individual decision-makers and first responders for relief effort coordination.","PeriodicalId":280468,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3284566.3284572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We employ multi-modal data (i.e., unstructured text, gazetteers, and imagery) for location-centric demand/request matching in the context of disaster relief. After classifying the Need expressed in a tweet (the WHAT), we leverage OpenStreetMap to geolocate that Need on a computationally accessible map of the local terrain (the WHERE) populated with location features such as hospitals and housing. Further, our novel use of flood mapping based on satellite images of the affected area supports the elimination of candidate resources that are not accessible by road transportation. The resulting map-based visualization combines disaster-related tweets, imagery and pre-existing knowledge-base resources (gazetteers) to reduce decision-making latency and enhance resiliency by assisting individual decision-makers and first responders for relief effort coordination.
D-record:灾难响应和救济协调管道
我们采用多模态数据(即非结构化文本、地名词典和图像)在救灾背景下进行以位置为中心的需求/请求匹配。在对tweet中表达的需求(WHAT)进行分类后,我们利用OpenStreetMap在计算可访问的当地地形(WHERE)地图上对需求进行地理定位,该地图上填充了诸如医院和住房等位置特征。此外,我们基于受影响地区卫星图像的洪水测绘的新应用支持消除无法通过公路运输到达的候选资源。由此产生的基于地图的可视化结合了与灾害相关的推文、图像和预先存在的知识库资源(词典),通过协助个人决策者和救灾工作协调的第一响应者来减少决策延迟并增强复原力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信