Ultra-Low Resonance Frequency Mems Gravimeter with Off-Resonance Closed-Loop Control

C. Yi, Jun Wu, H. Maekoba, A. Parent, T. Ikehashi
{"title":"Ultra-Low Resonance Frequency Mems Gravimeter with Off-Resonance Closed-Loop Control","authors":"C. Yi, Jun Wu, H. Maekoba, A. Parent, T. Ikehashi","doi":"10.1109/INERTIAL53425.2022.9787739","DOIUrl":null,"url":null,"abstract":"This paper reports on a MEMS gravimeter that has a closed-loop system to maintain an ultra-low resonance frequency of 1Hz. The low resonance frequency is attained by using a spring that is the resultant of positive mechanical stiffnesses and negative electrical stiffnesses. Voltage-tunability of the electrical stiffness enables ultra-small and tunable total stiffness. To attain a quick response even at the low resonance frequency, an amplitude monitoring and tuning are done at a higher off-resonance frequency of 330Hz. We demonstrate through simulations that the temperature dependence of the resonance frequency can be eliminated by using closed-loop tuning. To prevent issues caused by the ultra-small stiffness, we employ a force-balanced system that nulls the mass displacement. The sensitivity of the gravimeter is found to be 57V/Gal.","PeriodicalId":435781,"journal":{"name":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL53425.2022.9787739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports on a MEMS gravimeter that has a closed-loop system to maintain an ultra-low resonance frequency of 1Hz. The low resonance frequency is attained by using a spring that is the resultant of positive mechanical stiffnesses and negative electrical stiffnesses. Voltage-tunability of the electrical stiffness enables ultra-small and tunable total stiffness. To attain a quick response even at the low resonance frequency, an amplitude monitoring and tuning are done at a higher off-resonance frequency of 330Hz. We demonstrate through simulations that the temperature dependence of the resonance frequency can be eliminated by using closed-loop tuning. To prevent issues caused by the ultra-small stiffness, we employ a force-balanced system that nulls the mass displacement. The sensitivity of the gravimeter is found to be 57V/Gal.
非共振闭环控制的超低谐振频率Mems重力仪
本文报道了一种MEMS重力仪,该重力仪具有闭环系统,可保持1Hz的超低谐振频率。低共振频率是通过使用弹簧来实现的,弹簧是正机械刚度和负电刚度的结果。电压可调的电刚度使总刚度超小可调。为了在低共振频率下获得快速响应,在330Hz的较高非共振频率下进行幅度监测和调谐。仿真结果表明,采用闭环调谐可以消除谐振频率对温度的依赖。为了防止由超小刚度引起的问题,我们采用了一个力平衡系统,使质量位移为零。该重力仪的灵敏度为57V/Gal。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信