{"title":"Automated Detail Planning and Control for First-of-Class Projects Using Product-Based-Planning and Yard Specific","authors":"Ronald de Vries, E. Bjorkner, Patrick D. Roberts","doi":"10.5957/smc-2022-024","DOIUrl":null,"url":null,"abstract":"This paper describes the benefits of capturing yard specific value streams to apply automated detail planning and control efforts for first-of-class projects. Allowing the recognition of over 90% of the relations, dependencies and constraints for the operational process prior to the completion of the engineering model. Creating the ability to integrate the need by dates from production with the workload and priorities for the engineering team’s schedule to cut back on overall lead-time. Through rolling wave-planning methods and direct integrations with the engineering 3D detailed design model automated sequencing, budgeting (hours/duration), resource allocation and progress recognition takes place in a yard control framework. This allows for closed feedback loops on operational performance as well as the instant recognition of progress, consumed hours, load-views, deviations and risks by direct roll ups to the project control level.","PeriodicalId":336268,"journal":{"name":"Day 2 Wed, September 28, 2022","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 28, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/smc-2022-024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the benefits of capturing yard specific value streams to apply automated detail planning and control efforts for first-of-class projects. Allowing the recognition of over 90% of the relations, dependencies and constraints for the operational process prior to the completion of the engineering model. Creating the ability to integrate the need by dates from production with the workload and priorities for the engineering team’s schedule to cut back on overall lead-time. Through rolling wave-planning methods and direct integrations with the engineering 3D detailed design model automated sequencing, budgeting (hours/duration), resource allocation and progress recognition takes place in a yard control framework. This allows for closed feedback loops on operational performance as well as the instant recognition of progress, consumed hours, load-views, deviations and risks by direct roll ups to the project control level.