Full chip thermal simulation

Zhiping Yu, D. Yergeau, R. Dutton, O. S. Nakagawa, N. Chang, Shen Lin, Weize Xie
{"title":"Full chip thermal simulation","authors":"Zhiping Yu, D. Yergeau, R. Dutton, O. S. Nakagawa, N. Chang, Shen Lin, Weize Xie","doi":"10.1109/ISQED.2000.838867","DOIUrl":null,"url":null,"abstract":"A multilayer, full chip thermal analysis is presented. The design of the chip at functional-block level is directly captured by the simulator, allowing the assessment of the chip layout impact on the system performance due to the elevated operational temperature. The heat generation for each block is obtained by running the circuit-level electrical simulation separately on individual functional units. The thermal diffusion equation is then solved based on the actual structure of the chip including substrate and interconnect/insulating layers. Different thermal conductivity can be specified for each material layer. The effect of package on chip temperature distribution is modeled using thermally resistive layers as the boundary between the simulated structure and surrounding environment. Proper adjustment of the boundary thermal resistance results in the correct range of simulated temperature distribution as compared to the measured data. Both physics and implementation for the thermal simulation are described. The code is applied to the analysis of a realistic design of a CPU chip made of SOI technology with up to six metal interconnect layers. A comprehensive review of the simulation results is presented.","PeriodicalId":113766,"journal":{"name":"Proceedings IEEE 2000 First International Symposium on Quality Electronic Design (Cat. No. PR00525)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 2000 First International Symposium on Quality Electronic Design (Cat. No. PR00525)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2000.838867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

A multilayer, full chip thermal analysis is presented. The design of the chip at functional-block level is directly captured by the simulator, allowing the assessment of the chip layout impact on the system performance due to the elevated operational temperature. The heat generation for each block is obtained by running the circuit-level electrical simulation separately on individual functional units. The thermal diffusion equation is then solved based on the actual structure of the chip including substrate and interconnect/insulating layers. Different thermal conductivity can be specified for each material layer. The effect of package on chip temperature distribution is modeled using thermally resistive layers as the boundary between the simulated structure and surrounding environment. Proper adjustment of the boundary thermal resistance results in the correct range of simulated temperature distribution as compared to the measured data. Both physics and implementation for the thermal simulation are described. The code is applied to the analysis of a realistic design of a CPU chip made of SOI technology with up to six metal interconnect layers. A comprehensive review of the simulation results is presented.
全芯片热模拟
提出了一种多层全芯片热分析方法。芯片在功能模块级的设计由模拟器直接捕获,允许评估芯片布局对系统性能的影响,因为工作温度升高。通过在单个功能单元上分别运行电路级电气仿真,可以获得每个块的发热量。然后根据芯片的实际结构(包括衬底和互连层/绝缘层)求解热扩散方程。每个材料层可指定不同的导热系数。采用热阻层作为模拟结构与周围环境的边界,模拟了封装对芯片温度分布的影响。对边界热阻进行适当的调整,可以使模拟温度分布的范围与实测数据相一致。描述了热模拟的物理和实现。该代码应用于分析一个由SOI技术制成的具有多达六层金属互连层的CPU芯片的实际设计。对模拟结果进行了全面的回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信