{"title":"Multi Modal Analysis of memes for Sentiment extraction","authors":"Nayan Varma Alluri, Neeli Dheeraj Krishna","doi":"10.1109/ICIIP53038.2021.9702696","DOIUrl":null,"url":null,"abstract":"Memes are one of the most ubiquitous forms of social media communication. The study and processing of memes, which are intrinsically multimedia, is a popular topic right now. The study presented in this research is based on the Memotion dataset, which involves categorising memes based on irony, comedy, motivation, and overall-sentiment. Three separate innovative transformer-based techniques have been developed, and their outcomes have been thoroughly reviewed.The best algorithm achieved a macro F1 score of 0.633 for humour classification, 0.55 for motivation classification, 0.61 for sarcasm classification, and 0.575 for overall sentiment of the meme out of all our techniques.","PeriodicalId":431272,"journal":{"name":"2021 Sixth International Conference on Image Information Processing (ICIIP)","volume":"678 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Image Information Processing (ICIIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIP53038.2021.9702696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Memes are one of the most ubiquitous forms of social media communication. The study and processing of memes, which are intrinsically multimedia, is a popular topic right now. The study presented in this research is based on the Memotion dataset, which involves categorising memes based on irony, comedy, motivation, and overall-sentiment. Three separate innovative transformer-based techniques have been developed, and their outcomes have been thoroughly reviewed.The best algorithm achieved a macro F1 score of 0.633 for humour classification, 0.55 for motivation classification, 0.61 for sarcasm classification, and 0.575 for overall sentiment of the meme out of all our techniques.