Analysis of a Biological Ultrasonic Sensory System

A. D. Danak, M. Hastings
{"title":"Analysis of a Biological Ultrasonic Sensory System","authors":"A. D. Danak, M. Hastings","doi":"10.1115/imece2001/nca-23541","DOIUrl":null,"url":null,"abstract":"\n A mathematical model is developed to examine the ability of American shad to detect ultrasound. The preliminary model is integral in obtaining a thorough understanding of the impact of the swimbladder and unique structures in the inner ear of the American shad on auditory sensitivity. Behavioral studies have already shown that a few fish species, including American shad (Alosa sapidissima) can detect ultrasonic frequencies up to 200 kHz (Dunning et.al., 1992; Nestler, Ploskey, and Pickery, 1992; Mann, Lu, and Popper, 1997; Mann, et. al 1998; Popper et.al, 1999). Although the auditory mechanisms involved are yet to be determined, all evidence obtained from this initial model suggests that the inner ear and auditory processing system play a key role. Once fully completed, such a model can be used to initiate development of a man-made sensor with similar capabilities of the shad ear for use in vivo clinical procedures using ultrasound.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/nca-23541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A mathematical model is developed to examine the ability of American shad to detect ultrasound. The preliminary model is integral in obtaining a thorough understanding of the impact of the swimbladder and unique structures in the inner ear of the American shad on auditory sensitivity. Behavioral studies have already shown that a few fish species, including American shad (Alosa sapidissima) can detect ultrasonic frequencies up to 200 kHz (Dunning et.al., 1992; Nestler, Ploskey, and Pickery, 1992; Mann, Lu, and Popper, 1997; Mann, et. al 1998; Popper et.al, 1999). Although the auditory mechanisms involved are yet to be determined, all evidence obtained from this initial model suggests that the inner ear and auditory processing system play a key role. Once fully completed, such a model can be used to initiate development of a man-made sensor with similar capabilities of the shad ear for use in vivo clinical procedures using ultrasound.
生物超声传感系统的分析
建立了一个数学模型来检验美国鲱鱼检测超声波的能力。该初步模型对于全面了解美洲鲥鱼的鳔和内耳独特结构对听觉敏感性的影响是不可或缺的。行为研究已经表明,一些鱼类,包括美洲鲥鱼(Alosa sapidissima)可以探测到高达200千赫的超声波频率(Dunning等)。, 1992;Nestler, Ploskey, and Pickery, 1992;Mann, Lu, and Popper, 1997;Mann等人1998;Popper et.al, 1999)。虽然所涉及的听觉机制尚未确定,但从这个初始模型中获得的所有证据表明,内耳和听觉处理系统起着关键作用。一旦完全完成,这样的模型可以用于开发具有类似能力的人造传感器,用于使用超声波的体内临床程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信