Surface and Grain-boundary Effects in Copper interconnects Thin Films Modeling with an Atomistic Basis

Daniel Valencia, Kuang-Chung Wang, Yuanchen Chu, Gerhard Klimeck, M. Povolotskyi
{"title":"Surface and Grain-boundary Effects in Copper interconnects Thin Films Modeling with an Atomistic Basis","authors":"Daniel Valencia, Kuang-Chung Wang, Yuanchen Chu, Gerhard Klimeck, M. Povolotskyi","doi":"10.1109/SISPAD.2018.8551705","DOIUrl":null,"url":null,"abstract":"As interconnects become smaller, their conductivity increases along with the parasitic effects in MOSFET technologies [1] Therefore, investigating how to model the scattering effects on the nanoscale is important to determine how to engineer interconnects toreduce those parasitic effects. In this work, a fully atomistic method is studied to model the electronic transport properties of copper thin films. For this purpose, a tight binding basis previously benchmarked against first principles calculations [2] is used todescribe surface roughness and grain boundary effects on comparablepper thin films with a thickness comparable to the values suggested by ITRS roadmap [3]. In contrast with traditional models, the results show that the tight binding method can quantify those scattering effects at low temperature without fitting any experimental parameters [4], [5].","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1971 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As interconnects become smaller, their conductivity increases along with the parasitic effects in MOSFET technologies [1] Therefore, investigating how to model the scattering effects on the nanoscale is important to determine how to engineer interconnects toreduce those parasitic effects. In this work, a fully atomistic method is studied to model the electronic transport properties of copper thin films. For this purpose, a tight binding basis previously benchmarked against first principles calculations [2] is used todescribe surface roughness and grain boundary effects on comparablepper thin films with a thickness comparable to the values suggested by ITRS roadmap [3]. In contrast with traditional models, the results show that the tight binding method can quantify those scattering effects at low temperature without fitting any experimental parameters [4], [5].
基于原子基的铜互连薄膜模型中的表面和晶界效应
随着互连变得越来越小,它们的电导率随着MOSFET技术中的寄生效应而增加[1],因此,研究如何在纳米尺度上模拟散射效应对于确定如何设计互连以减少这些寄生效应非常重要。本文研究了铜薄膜电子输运性质的全原子化建模方法。为此,使用先前以第一性原理计算为基准的紧密结合基础[2]来描述厚度与ITRS路线图[3]建议的值相当的可比较薄膜的表面粗糙度和晶界效应。与传统模型相比,结果表明,紧密结合方法可以量化低温下的散射效应,而无需拟合任何实验参数[4],[5]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信