An evaluation of three endmember extraction algorithms: ATGP, ICA-EEA & VCA

Isaac D. Gerg
{"title":"An evaluation of three endmember extraction algorithms: ATGP, ICA-EEA & VCA","authors":"Isaac D. Gerg","doi":"10.1109/WHISPERS.2010.5594830","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate three endmember extraction algorithms for use in hyperspectral imagery unmixing: automatic target generation procedure (ATGP), independent component analysis endmember extraction algorithm (ICA-EEA), and vertex component analysis (VCA). We evaluate each algorithm's ability to find known pure pixels in a scene of simulated data. Several variations of simulated data are used to thoroughly examine the unmixing limits of each algorithm.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we evaluate three endmember extraction algorithms for use in hyperspectral imagery unmixing: automatic target generation procedure (ATGP), independent component analysis endmember extraction algorithm (ICA-EEA), and vertex component analysis (VCA). We evaluate each algorithm's ability to find known pure pixels in a scene of simulated data. Several variations of simulated data are used to thoroughly examine the unmixing limits of each algorithm.
ATGP、ICA-EEA和VCA三种端元提取算法的评价
在本文中,我们评估了三种用于高光谱图像解混的端元提取算法:自动目标生成程序(ATGP)、独立成分分析端元提取算法(ICA-EEA)和顶点成分分析(VCA)。我们评估了每个算法在模拟数据场景中找到已知纯像素的能力。模拟数据的几个变化被用来彻底检查每个算法的解混限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信