APPLICATION OF MACHINE LEARNING ALGORITHMS FOR MODELING THE CURRENT-VOLTAGE CHARACTERISTIC OF A MEMRISTOR

A. Ereshchenko
{"title":"APPLICATION OF MACHINE LEARNING ALGORITHMS FOR MODELING THE CURRENT-VOLTAGE CHARACTERISTIC OF A MEMRISTOR","authors":"A. Ereshchenko","doi":"10.29003/m1541.mmmsec-2020/133-136","DOIUrl":null,"url":null,"abstract":"The goal of this work is to explore the possibility of using machine learning algorithms for modeling the current-voltage characteristic of a memristor, using modeling of HfO2 and TiO2 based memristors as an example. The possibility of combining several mathematical models based on the predictions of individual models is investigated. The results obtained using the combined model are compared with the predictions of individual models and experimental data.","PeriodicalId":151453,"journal":{"name":"Mathematical modeling in materials science of electronic component","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical modeling in materials science of electronic component","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29003/m1541.mmmsec-2020/133-136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this work is to explore the possibility of using machine learning algorithms for modeling the current-voltage characteristic of a memristor, using modeling of HfO2 and TiO2 based memristors as an example. The possibility of combining several mathematical models based on the predictions of individual models is investigated. The results obtained using the combined model are compared with the predictions of individual models and experimental data.
机器学习算法在忆阻器电流-电压特性建模中的应用
这项工作的目标是探索使用机器学习算法来建模忆阻器的电流电压特性的可能性,以HfO2和TiO2基忆阻器的建模为例。在单个模型预测的基础上,探讨了组合多个数学模型的可能性。将组合模型的预测结果与单个模型的预测结果和实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信