Behavioral diversity with multiple behavioral distances

S. Doncieux, Jean-Baptiste Mouret
{"title":"Behavioral diversity with multiple behavioral distances","authors":"S. Doncieux, Jean-Baptiste Mouret","doi":"10.1109/CEC.2013.6557731","DOIUrl":null,"url":null,"abstract":"Recent results in evolutionary robotics show that explicitly encouraging the behavioral diversity of candidate solutions drastically improves the convergence of many experiments. The performance of this technique depends, however, on the choice of a behavioral similarity measure (BSM). Here we propose that the experimenter does not actually need to choose: provided that several similarity measures are conceivable, using them all could lead to better results than choosing a single one. Values computed by several BSM can be averaged, which is computationally expensive because it requires the computation of all the BSM at each generation, or randomly switched at a user-chosen frequency, which is a cheaper alternative. We compare these two approaches in two experimental setups - a ball collecting task and hexapod locomotion - with five different BSMs. Results show that (1) using several BSM in a single run increases the performance while avoiding the need to choose the most appropriate BSM and (2) switching between BSMs leads to better results than taking the mean behavioral diversity, while requiring less computational power.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Recent results in evolutionary robotics show that explicitly encouraging the behavioral diversity of candidate solutions drastically improves the convergence of many experiments. The performance of this technique depends, however, on the choice of a behavioral similarity measure (BSM). Here we propose that the experimenter does not actually need to choose: provided that several similarity measures are conceivable, using them all could lead to better results than choosing a single one. Values computed by several BSM can be averaged, which is computationally expensive because it requires the computation of all the BSM at each generation, or randomly switched at a user-chosen frequency, which is a cheaper alternative. We compare these two approaches in two experimental setups - a ball collecting task and hexapod locomotion - with five different BSMs. Results show that (1) using several BSM in a single run increases the performance while avoiding the need to choose the most appropriate BSM and (2) switching between BSMs leads to better results than taking the mean behavioral diversity, while requiring less computational power.
具有多重行为距离的行为多样性
进化机器人的最新研究结果表明,明确鼓励候选解决方案的行为多样性大大提高了许多实验的收敛性。然而,这种技术的性能取决于行为相似性度量(BSM)的选择。在这里,我们建议实验者实际上不需要选择:如果几个相似度量是可以想象的,使用它们可能会比选择一个更好的结果。可以取几个BSM计算的值的平均值,这在计算上是昂贵的,因为它需要在每一代计算所有BSM,或者在用户选择的频率上随机切换,这是一种更便宜的替代方法。我们在两个实验设置中比较了这两种方法-一个球收集任务和六足运动-具有五种不同的bsm。结果表明:(1)在一次运行中使用多个BSM可以提高性能,同时避免了选择最合适的BSM的需要;(2)在BSM之间切换比取平均行为多样性可以获得更好的结果,同时需要更少的计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信