Energy Consumption Dynamical Models for Smart Factories Based on Subspace Identification Methods

Miguel Angel Bermeo-Ayerbe, C. Ocampo‐Martinez
{"title":"Energy Consumption Dynamical Models for Smart Factories Based on Subspace Identification Methods","authors":"Miguel Angel Bermeo-Ayerbe, C. Ocampo‐Martinez","doi":"10.1109/CCAC.2019.8921089","DOIUrl":null,"url":null,"abstract":"Given the need of implementing methodologies in industry for the reduction of the energy consumption costs, it is required to create modelling methodologies that, together with the use of new technologies, will allow identifying energy consumption models based on input-output data. These models will later be used to design a suitable model-based control strategy. In this paper, a subspace identification algorithm based on the RQ decomposition approach has been reported, which is both implemented and validated on a test-bench that emulates the energy consumption of an industrial machine within a manufacturing process. Subsequently, the resultant model fitting when using the proposed modelling methodology has been compared with different identification routines included into the MATLAB System Identification Toolbox™, showing, in general, better results for the proposed methodology in this paper, with up to almost 80% of fitting in some cases.","PeriodicalId":184764,"journal":{"name":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAC.2019.8921089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Given the need of implementing methodologies in industry for the reduction of the energy consumption costs, it is required to create modelling methodologies that, together with the use of new technologies, will allow identifying energy consumption models based on input-output data. These models will later be used to design a suitable model-based control strategy. In this paper, a subspace identification algorithm based on the RQ decomposition approach has been reported, which is both implemented and validated on a test-bench that emulates the energy consumption of an industrial machine within a manufacturing process. Subsequently, the resultant model fitting when using the proposed modelling methodology has been compared with different identification routines included into the MATLAB System Identification Toolbox™, showing, in general, better results for the proposed methodology in this paper, with up to almost 80% of fitting in some cases.
基于子空间辨识方法的智能工厂能耗动态模型
由于需要在工业中执行减少能源消耗成本的方法,因此需要制订模型方法,在使用新技术的同时,能够根据投入产出数据确定能源消耗模式。这些模型稍后将用于设计合适的基于模型的控制策略。本文提出了一种基于RQ分解方法的子空间识别算法,并在模拟制造过程中工业机器能耗的试验台上进行了实现和验证。随后,使用所提出的建模方法时的模型拟合结果与MATLAB系统识别工具箱™中包含的不同识别例程进行了比较,结果表明,总体而言,本文所提出的方法的结果更好,在某些情况下拟合率高达80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信