{"title":"Visual adaptation of scale and imprecision in a noisy world","authors":"M. H. Brill","doi":"10.1109/AIPR.2004.49","DOIUrl":null,"url":null,"abstract":"Pointlike quantum noise in an image can be defeated either by representing the image at a low gray-scale resolution or at a low spatial resolution. The first solution locates an image at an inherent imprecision, and the second locates the image at an inherent spatial scale. Two vision-based models combat noise by automatic and local spatial-scale adjustment. Making contrast steps proportional to the square root of intensity (the deVries-Rose law) uses the imprecision solution. A hybrid system such as human vision use both spatial solutions, and also carries out similar processing in the time domain.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pointlike quantum noise in an image can be defeated either by representing the image at a low gray-scale resolution or at a low spatial resolution. The first solution locates an image at an inherent imprecision, and the second locates the image at an inherent spatial scale. Two vision-based models combat noise by automatic and local spatial-scale adjustment. Making contrast steps proportional to the square root of intensity (the deVries-Rose law) uses the imprecision solution. A hybrid system such as human vision use both spatial solutions, and also carries out similar processing in the time domain.