A Router Architecture for Real-Time Point-to-Point Networks

J. Rexford, J. Hall, K. Shin
{"title":"A Router Architecture for Real-Time Point-to-Point Networks","authors":"J. Rexford, J. Hall, K. Shin","doi":"10.1145/232973.232998","DOIUrl":null,"url":null,"abstract":"Parallel machines have the potential to satisfy the large computational demands of emerging real-time applications. These applications require a predictable communication network, where time-constrained traffic requires bounds on latency or throughput while good average performance suffices for best-effort packets. This paper presents a router architecture that tailors low-level routing, switching, arbitration and flow-control policies to the conflicting demands of each traffic class. The router implements deadline-based scheduling, with packet switching and table-driven multicast routing, to bound end-to-end delay for time-constrained traffic, while allowing best-effort traffic to capitalize on the low-latency routing and switching schemes common in modern parallel machines. To limit the cost of servicing time-constrained traffic, the router shares packet buffers and link-scheduling logic between the multiple output ports. Verilog simulations demonstrate that the design meets the performance goals of both traffic classes in a single-chip solution.","PeriodicalId":415354,"journal":{"name":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/232973.232998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Parallel machines have the potential to satisfy the large computational demands of emerging real-time applications. These applications require a predictable communication network, where time-constrained traffic requires bounds on latency or throughput while good average performance suffices for best-effort packets. This paper presents a router architecture that tailors low-level routing, switching, arbitration and flow-control policies to the conflicting demands of each traffic class. The router implements deadline-based scheduling, with packet switching and table-driven multicast routing, to bound end-to-end delay for time-constrained traffic, while allowing best-effort traffic to capitalize on the low-latency routing and switching schemes common in modern parallel machines. To limit the cost of servicing time-constrained traffic, the router shares packet buffers and link-scheduling logic between the multiple output ports. Verilog simulations demonstrate that the design meets the performance goals of both traffic classes in a single-chip solution.
实时点对点网络的路由器体系结构
并行机器有潜力满足新兴实时应用的大量计算需求。这些应用程序需要可预测的通信网络,其中受时间限制的流量需要限制延迟或吞吐量,而良好的平均性能足以满足“尽力而为”的数据包。本文提出了一种路由器架构,该架构可以根据不同流量类的冲突需求定制低级路由、交换、仲裁和流控制策略。路由器通过分组交换和表驱动的多播路由实现基于截止日期的调度,为时间受限的流量绑定端到端延迟,同时允许尽可能多的流量利用现代并行机器中常见的低延迟路由和交换方案。为了限制服务时间受限流量的成本,路由器在多个输出端口之间共享数据包缓冲区和链路调度逻辑。Verilog仿真表明,该设计在单芯片解决方案中满足两类流量的性能目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信