ANN backpropagation power consumption forecasting

R. Schiopu, C. Barbulescu, S. Kilyeni, A. Deacu, A. Vernica
{"title":"ANN backpropagation power consumption forecasting","authors":"R. Schiopu, C. Barbulescu, S. Kilyeni, A. Deacu, A. Vernica","doi":"10.1109/EUROCON.2015.7313774","DOIUrl":null,"url":null,"abstract":"The paper is focusing on artificial neural networks (ANN) based load forecasting. It is applied for hourly load and daily load curves forecasting. The backpropagation algorithm is presented. The basic propagation algorithm is completed with conjugated gradient and parabolic interpolation. A software tool has been developed in Matlab environment. The results are compared with the ones provided by classic forecasting methods.","PeriodicalId":133824,"journal":{"name":"IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2015.7313774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is focusing on artificial neural networks (ANN) based load forecasting. It is applied for hourly load and daily load curves forecasting. The backpropagation algorithm is presented. The basic propagation algorithm is completed with conjugated gradient and parabolic interpolation. A software tool has been developed in Matlab environment. The results are compared with the ones provided by classic forecasting methods.
人工神经网络反向传播功耗预测
本文主要研究基于人工神经网络(ANN)的负荷预测。应用于小时负荷和日负荷曲线预测。给出了反向传播算法。基本的传播算法是用共轭梯度和抛物线插值完成的。在Matlab环境下开发了相应的软件工具。并将结果与经典预测方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信