Multiple target tracking with asynchronous bearings-only-measurements

T. Hanselmann, M. Morelande
{"title":"Multiple target tracking with asynchronous bearings-only-measurements","authors":"T. Hanselmann, M. Morelande","doi":"10.1109/ICIF.2007.4408056","DOIUrl":null,"url":null,"abstract":"An algorithm for detection and tracking of multiple targets using bearings measurements from several sensors is developed. The algorithm is an implementation of a multiple hypothesis tracker with pruning of unlikely hypotheses. Tracking conditional on each hypothesis can be performed using any suitable filtering approximation. In this paper a range- parameterized unscented Kalman filter is used. Each hypothesis describes a track collection with varying number of targets. Final track estimates are obtained by weighted clustering according to hypothesis probabilities and clustered track states. Simulation experiments include arbitrary setup of multiple targets and multiple moving receiver platforms (sensors). The main results are the asynchronous modeling of measurements arrivals which allows an effective and efficient processing in a Bayesian MHT framework.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

An algorithm for detection and tracking of multiple targets using bearings measurements from several sensors is developed. The algorithm is an implementation of a multiple hypothesis tracker with pruning of unlikely hypotheses. Tracking conditional on each hypothesis can be performed using any suitable filtering approximation. In this paper a range- parameterized unscented Kalman filter is used. Each hypothesis describes a track collection with varying number of targets. Final track estimates are obtained by weighted clustering according to hypothesis probabilities and clustered track states. Simulation experiments include arbitrary setup of multiple targets and multiple moving receiver platforms (sensors). The main results are the asynchronous modeling of measurements arrivals which allows an effective and efficient processing in a Bayesian MHT framework.
多目标跟踪异步方位测量
提出了一种利用多个传感器的方位测量数据对多目标进行检测和跟踪的算法。该算法是一种对不可能假设进行修剪的多假设跟踪器的实现。每个假设的跟踪条件可以使用任何合适的滤波近似来执行。本文采用了一种范围参数化无气味卡尔曼滤波器。每个假设描述了具有不同数量目标的轨道集合。根据假设概率和聚类后的航迹状态,通过加权聚类得到最终航迹估计。仿真实验包括任意设置多个目标和多个移动接收机平台(传感器)。主要结果是测量到达的异步建模,它允许在贝叶斯MHT框架中进行有效和高效的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信