Performance of The Dispin Models with Automatic Parameter Calibration on The Transformation of Rainfall to Runoff Data

Sulianto Sulianto, M. Bisri, L. Limantara, D. Sisinggih
{"title":"Performance of The Dispin Models with Automatic Parameter Calibration on The Transformation of Rainfall to Runoff Data","authors":"Sulianto Sulianto, M. Bisri, L. Limantara, D. Sisinggih","doi":"10.21776/ub.civense.2019.00202.2","DOIUrl":null,"url":null,"abstract":"This article presents a new model of the DISPRIN Model combination with two different level optimization methods. The new model of DISPRIN Model combination and Differential Evolution (DE) algorithm is called DISPRIN25-DE Models and its incorporation with Monte Carlo Simulation method called DISPRIN25-MC Models. The case study is Lesti Watershed (319.14 Km) in East Java. The model test uses a 10-year daily data set, from January 1, 2007 to December 31, 2016. Data series Year 2007 ~ 2013 as a set of training data for calibration and data Year 2014 ~ 2016 as testing data set for model validation. Running program DISPRIN25-DE Models with input parameter value C_min = 0, C_max = 1, H_min = 0, H_max = 600 mm obtained best fitness 0.044 m/sec, NSE = 0.762 and PME = -0.059. The DISPRIN25-MC Models analysis generates a minimum RMSE of 0.056 m/sec, NSE = 0.779, PME = -0.70. From the RMSE and NSE indicators it appears that both models can show an equivalent level of performance, but in terms of the PME indicator and iteration time is apparent The DISPRIN25-MC model has worse performance than the two DISPRIN25-DE models.","PeriodicalId":432135,"journal":{"name":"Civil and Environmental Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/ub.civense.2019.00202.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents a new model of the DISPRIN Model combination with two different level optimization methods. The new model of DISPRIN Model combination and Differential Evolution (DE) algorithm is called DISPRIN25-DE Models and its incorporation with Monte Carlo Simulation method called DISPRIN25-MC Models. The case study is Lesti Watershed (319.14 Km) in East Java. The model test uses a 10-year daily data set, from January 1, 2007 to December 31, 2016. Data series Year 2007 ~ 2013 as a set of training data for calibration and data Year 2014 ~ 2016 as testing data set for model validation. Running program DISPRIN25-DE Models with input parameter value C_min = 0, C_max = 1, H_min = 0, H_max = 600 mm obtained best fitness 0.044 m/sec, NSE = 0.762 and PME = -0.059. The DISPRIN25-MC Models analysis generates a minimum RMSE of 0.056 m/sec, NSE = 0.779, PME = -0.70. From the RMSE and NSE indicators it appears that both models can show an equivalent level of performance, but in terms of the PME indicator and iteration time is apparent The DISPRIN25-MC model has worse performance than the two DISPRIN25-DE models.
自动参数定标Dispin模型在降雨到径流数据转换中的性能
结合两种不同层次的优化方法,提出了一种新的DISPRIN模型。将disprin25模型与差分进化(DE)算法相结合的新模型称为DISPRIN25-DE模型,并将其与蒙特卡罗仿真方法相结合称为DISPRIN25-MC模型。案例研究是东爪哇的莱斯蒂流域(319.14公里)。模型检验使用2007年1月1日至2016年12月31日的10年每日数据集。数据系列2007 ~ 2013年作为一组训练数据进行校准,2014 ~ 2016年作为一组测试数据进行模型验证。运行程序DISPRIN25-DE模型,输入参数C_min = 0, C_max = 1, H_min = 0, H_max = 600 mm,得到最佳适应度为0.044 m/sec, NSE = 0.762, PME = -0.059。DISPRIN25-MC模型分析产生的最小RMSE为0.056 m/sec, NSE = 0.779, PME = -0.70。从RMSE和NSE指标来看,这两个模型似乎都可以显示出相同的性能水平,但是从PME指标和迭代时间来看,DISPRIN25-MC模型的性能明显比两个DISPRIN25-DE模型差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信