Convolutional Autoencoder-Based Sensor Fault Classification

Jae-Wan Yang, Young-Doo Lee, Insoo Koo
{"title":"Convolutional Autoencoder-Based Sensor Fault Classification","authors":"Jae-Wan Yang, Young-Doo Lee, Insoo Koo","doi":"10.1109/ICUFN.2018.8437014","DOIUrl":null,"url":null,"abstract":"Automation machines perform not only simple operations but also operations requiring high accuracy. Sensors are essential to carry out the delicate operations. Therefore if there is a fault in sensors the machine can malfunction and the process-line will be damaged. To prevent this sensors should be monitored and diagnosed in real time. In the paper we propose a convolutional autoencoder-based sensor fault classification scheme in which time-domain statistical features and convolutional autoencoder features of sensor data are both utilized to classify types of sensor faults. Through simulation it is shown that the proposed scheme can improve classification performance of the sensor faults.","PeriodicalId":224367,"journal":{"name":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN.2018.8437014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automation machines perform not only simple operations but also operations requiring high accuracy. Sensors are essential to carry out the delicate operations. Therefore if there is a fault in sensors the machine can malfunction and the process-line will be damaged. To prevent this sensors should be monitored and diagnosed in real time. In the paper we propose a convolutional autoencoder-based sensor fault classification scheme in which time-domain statistical features and convolutional autoencoder features of sensor data are both utilized to classify types of sensor faults. Through simulation it is shown that the proposed scheme can improve classification performance of the sensor faults.
基于卷积自编码器的传感器故障分类
自动化机器不仅可以进行简单的操作,而且可以进行精度要求很高的操作。传感器是进行精密手术所必需的。因此,如果传感器出现故障,机器可能会出现故障,生产线将被损坏。为了防止这种情况发生,应该对传感器进行实时监测和诊断。本文提出了一种基于卷积自编码器的传感器故障分类方案,该方案利用传感器数据的时域统计特征和卷积自编码器特征对传感器故障进行分类。仿真结果表明,该方法可以提高传感器故障的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信