Metode Bayesian untuk Estimasi Parameter Distribusi Eksponensial pada Data Tersensor

Reza Anjab Ramadhan, Widyanti Rahayu, Ibnu Hadi
{"title":"Metode Bayesian untuk Estimasi Parameter Distribusi Eksponensial pada Data Tersensor","authors":"Reza Anjab Ramadhan, Widyanti Rahayu, Ibnu Hadi","doi":"10.21009/jmt.4.2.3","DOIUrl":null,"url":null,"abstract":"Parameter is a value that describe the characteristics of a population. But the parameterof a real data, the value is unknown. To estimate the value of the parameter,there are several methods, which are maximum likelihood estimation method (MLE)and Bayesian parameter estimation method. In Bayesian method, the prior informationis applied to update the current data. The prior is determined based on the informationin the data. This mini thesis is using censored data with exponential distribution, andusing the conjugate prior. Followed by squared error loss function (SELF), the estimatedvalue function ot the λ parameter is ˆλ =α+Σ_{i=1}^{n}δ_{i}β+Σ_{i=1}^{n}t_{i}with α and β are hyperparameters,Σ_{i=1}^{n}δ_{i} is the number of objects that experienced the event and Σ_{i=1}^{n}t_{i} is the numberof the survival time. When the function was applied on Stanford heart transplant data,the value of ˆλ = 0.00089, which means the patient’s failure (death) probability is lowand the patient’s probability to survive is high.","PeriodicalId":299241,"journal":{"name":"JMT : Jurnal Matematika dan Terapan","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMT : Jurnal Matematika dan Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21009/jmt.4.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parameter is a value that describe the characteristics of a population. But the parameterof a real data, the value is unknown. To estimate the value of the parameter,there are several methods, which are maximum likelihood estimation method (MLE)and Bayesian parameter estimation method. In Bayesian method, the prior informationis applied to update the current data. The prior is determined based on the informationin the data. This mini thesis is using censored data with exponential distribution, andusing the conjugate prior. Followed by squared error loss function (SELF), the estimatedvalue function ot the λ parameter is ˆλ =α+Σ_{i=1}^{n}δ_{i}β+Σ_{i=1}^{n}t_{i}with α and β are hyperparameters,Σ_{i=1}^{n}δ_{i} is the number of objects that experienced the event and Σ_{i=1}^{n}t_{i} is the numberof the survival time. When the function was applied on Stanford heart transplant data,the value of ˆλ = 0.00089, which means the patient’s failure (death) probability is lowand the patient’s probability to survive is high.
Bayesian的方法是对审查数据的指数分布参数的估计
参数是描述总体特征的值。但是一个真实数据的参数,值是未知的。估计参数值有几种方法,即极大似然估计法(MLE)和贝叶斯参数估计法。在贝叶斯方法中,利用先验信息更新当前数据。先验是根据数据中的信息确定的。这篇小型论文使用指数分布的截尾数据,并使用共轭先验。其次是误差平方损失函数(SELF), λ参数的估计值函数为:λ =α+Σ_{i=1}^{n}δ_{i}β+Σ_{i=1}^{n}t_{i},其中α和β为超参数,Σ_{i=1}^{n}δ_{i}为经历该事件的对象数,Σ_{i=1}^{n} t_{i}为生存时间数。将该函数应用于Stanford心脏移植数据时,其值为λ = 0.00089,即患者失败(死亡)概率低,患者存活概率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信