Source detection on networks using spatial temporal graph convolutional networks

Hao Sha, M. Hasan, G. Mohler
{"title":"Source detection on networks using spatial temporal graph convolutional networks","authors":"Hao Sha, M. Hasan, G. Mohler","doi":"10.1109/DSAA53316.2021.9564188","DOIUrl":null,"url":null,"abstract":"Detecting the source of an outbreak cluster during a pandemic like COVID-19 can provide insights into the transmission process, associated risk factors, and help contain the spread. In this work we study the problem of source detection from multiple snapshots of spreading on an arbitrary network structure. We use a spatial temporal graph convolutional network based model (SD-STGCN) to produce a source probability distribution, by fusing information from temporal and topological spaces. We perform extensive experiments using popular compartmental simulation models over synthetic networks and empirical contact networks. We also demonstrate the applicability of our approach with real COVID-19 case data.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"2150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting the source of an outbreak cluster during a pandemic like COVID-19 can provide insights into the transmission process, associated risk factors, and help contain the spread. In this work we study the problem of source detection from multiple snapshots of spreading on an arbitrary network structure. We use a spatial temporal graph convolutional network based model (SD-STGCN) to produce a source probability distribution, by fusing information from temporal and topological spaces. We perform extensive experiments using popular compartmental simulation models over synthetic networks and empirical contact networks. We also demonstrate the applicability of our approach with real COVID-19 case data.
基于时空图卷积网络的网络源检测
在像COVID-19这样的大流行期间,检测疫情集群的来源可以深入了解传播过程和相关风险因素,并有助于控制传播。在本工作中,我们研究了从任意网络结构上传播的多个快照中检测源的问题。我们使用基于时空图卷积网络的模型(SD-STGCN),通过融合时间空间和拓扑空间的信息来产生源概率分布。我们在合成网络和经验接触网络上使用流行的隔间模拟模型进行了广泛的实验。我们还用真实的COVID-19病例数据证明了我们的方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信